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As real-time systems increase in complexity to provide more and more
functionality and perform more demanding computations, the problem of
statically analyzing the Worst-Case Execution Time bound (WCET) of real-
time programs is becoming more and more time-consuming and imprecise.

The problem stems from the fact that with increasing program size also the
number of potentially relevant program and hardware states to be considered
during the WCET analysis increases. However, only a relatively small portion
of the program actually contributes to the final WCET bound. Large parts
of the program are thus irrelevant and are analyzed in vain. In the best case
this only leads to increased analysis time. Very often, however, the analysis of
irrelevant program parts interferes with the analysis of those program parts
that turn out to be relevant.

We explore a novel technique based on graph pruning that promises to
reduce the analysis overhead and, at the same time, increase the analysis’
precision. The basic idea is to eliminate those program parts from the anal-
ysis problem that are known to be irrelevant for the final WCET bound.
This reduces the analysis overhead, since only a subset of the program and
hardware states have to be tracked. Consequently, more aggressive analysis
techniques can be applied to the smaller problem, effectively reducing the
overestimation of the WCET. As a side-effect, interference from irrelevant
program parts are eliminated, e.g., on addresses of memory accesses, on loop
bounds, or on the cache or processor state.

First experiments using a commercial WCET analysis tool show that our
approach is feasible in practice and leads to reductions of up to 6% when a
standard IPET approach is used for the analysis.
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1 Introduction

Foremost size and complexity of software are causing the analysis overhead to grow
rapidly, as the number of potential states of the program under analysis increases. For
WCET analysis this effect is amplified since in order to arrive at a safe WCET bound,
hardware states need to be considered as well, adding to the number of potential software
states. Even when only small portions of a complex software program are relevant for
the final WCET estimation, the analysis, has to account for all of the program’s code
to derive a safe bound. Except for trivial analysis problems, this inevitably reduces the
precision of the WCET analysis, as irrelevant code parts interfere with the analysis of
relevant code parts and lead to unnecessary overestimation of the determined WCET
bound compared to the actual worst-case behavior.

Previous work is able to eliminate instructions irrelevant to flow analysis (program
slicing) and refine the WCET bound by identifying infeasible paths (see Section 5 for
details). With Iterative Graph Pruning (IGP), described in detail in the following sections,
we also aim to limit WCET analysis to relevant parts of a program, but do so on the
lower CFG-level. Based on criticality , basic blocks are grouped into sets according to the
length of their respective paths. The sets are then processed iteratively by decreasing path
length. During each iteration a subgraph of the original CFG is formed by unifying the
subgraph of the previous iteration with the basic blocks from the currently considered set.
A potentially more advanced WCET analysis is then applied to the program represented
by the new subgraph. The algorithm terminates, with a possibly refined WCET estimate,
as soon as a safe bound, valid for the original program, has been reached.

The benefits from this approach are that (1) the analysis problems defined by the
subgraphs at each iteration are much smaller than the original analysis problem. This
promises to reduce the analysis overhead, while still providing tight bounds. Further-
more, (2) processing the sets of basic blocks according to their decreasing path lengths,
eliminates interference from other basic blocks, whose longest paths are known to be
shorter. This improves the precision of the WCET analysis precisely for those code parts
of the real-time program that impact the WCET estimate the most.

The main contributions of this paper are as follows:

• We present a novel WCET analysis technique based on graph pruning that focuses
the analysis effort on relevant code parts of the real-time program.

• Due to reduced analysis overhead, more elaborate analysis techniques can be ap-
plied to the smaller sub-programs, leading to improved precision.

• We evaluate our approach using a commercial off-the-shelf WCET analysis tool
and demonstrate considerable improvements of WCET bounds.

The remainder of this paper is structured as follows. We first give some background
and motivation in Section 2. We then describe our novel graph pruning technique and
follow its main steps on a realistic example in Section 3. Section 4 presents a detailed
evaluation of our approach on well-established real-time benchmarks and a realistic pro-
cessor architecture. Related work is covered in Section 5 before concluding in Section 6.
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2 Background and Motivation

This section covers some basic definitions of control-flow graphs, paths, and WCET
analysis, followed by a brief discussion of recent findings motivating this work.

2.1 Background

We assume that static WCET analysis proceeds in two phases as proposed by Theiling
et al. [17]. Local worst-case execution times of individual basic blocks and control-flow
edges are computed first, followed by a longest path search over a weighted CFG, where
the weights are given by the local worst-case execution times.

Weighted Control-Flow Graph A weighted Control-Flow Graph (CFG) is a tuple
G = (V,E, r, t,W), where V is a set of nodes representing basic blocks that are connected
by control-flow edges in E. We assume that every CFG contains a root node r and sink
node t. The function W : V ∪ E → R associates the basic blocks and edges with a
weight.

Longest Path An ordered sequence of nodes (v1, . . . , vn) such that for 0 < i < n all
edges (vi, vi+1) are in E, is called a path. The length of a path |p| is given by the sum
of all its node and edge weights:

∑
0<i≤n

W(vi) +
∑

0<i<n
W((vi, vi+1)). A path p is a

longest path, when there exists no other path q such that |p| < |q|.
Local Execution Times The weight of individual CFG nodes and edges is usu-

ally computed using program analysis techniques that derive information on potential
program and processor states at all relevant program points. This information is then
combined to compute an upper bound of the local execution time of each basic block and
CFG edge.

Longest Path Search From the local execution times a weighted CFG is constructed
and a longest path search is performed to find the global WCET. This problem can
be solved via Integer Linear Programming (ILP) using the Implicit Path Enumeration
Technique (IPET) [10, 13]. Here, ILP variables represent execution counts of basic
blocks and constraints define legal execution paths in the CFG. A standard ILP solver
then determines the WCET. Alternatively dynamic programming [4] allows to directly
compute the longest path on acyclic CFGs. Cyclic CFGs can be handled by applying
this technique to acyclic subgraphs [15].

Worst-Case Execution Path A Worst-Case Execution Path (WCEP) is a longest
path in the weighted CFG as computed by the longest path search.

Worst-Case Execution Time The WCET of a program corresponds to the length of
the WCEP as computed by the longest path search. It is generally not feasible to compute
the actual WCET, we thus usually seek a (tight) estimation, the WCET bound. For the
purpose of brevity, we will use the term WCET to refer to the WCET bound.

2.2 Motivation

Recent work [2, 3] proposes a technique to profile the worst-case in real-time programs
using static program analysis. The authors define the Criticality metric for each basic
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Criticality Intervals*

Problem BBs I0 I1 I2 I3 I4 I5
debie-1 83 4 2 0 13 19 45
debie-2a 23 16 0 0 0 0 7
debie-2b 23 1 0 0 6 1 15
debie-2c 23 8 0 0 0 1 14
debie-3a 74 16 0 0 0 1 57
debie-3b 74 15 0 0 0 0 59
debie-3c 74 15 0 0 0 0 59
debie-4a 285 31 192 0 19 3 40
debie-4b 285 236 3 14 0 3 29
debie-4c 285 260 0 4 0 5 16
debie-4d 285 264 0 4 0 1 16
debie-5a 138 13 0 0 1 4 120
debie-5b 138 5 0 0 0 1 132
debie-6a 376 53 24 2 105 0 192
debie-6b 376 52 22 4 106 0 192
debie-6c 376 52 22 143 4 0 155
debie-6d 376 12 24 2 0 144 194

*
Intervals: 0 ≤ I0 < 0.25 < I1 < 0.5 < I2 < 0.75 < I3 < 0.9 < I4 < 0.99 < I5 ≤ 1

Table 1: Criticality statistics for the Debie1 benchmark

Criticality Intervals*

Problem BBs I0 I1 I2 I3 I4 I5
papa-a1 626 45 0 0 0 271 310
papa-a2a 1522 535 0 0 0 19 968
papa-a2b 1522 66 125 0 220 8 1103
papa-a3a 981 717 0 2 0 59 203
papa-a3b 981 201 0 0 2 89 689
papa-a4 334 56 0 0 0 54 224
papa-a5 438 0 0 0 2 10 426
papa-a6 682 25 0 4 42 81 530
papa-f1a 285 1 0 0 0 122 162
papa-f1b 285 279 0 0 0 0 6
papa-f2 8 0 0 0 3 1 4

*
Intervals: 0 ≤ I0 < 0.25 < I1 < 0.5 < I2 < 0.75 < I3 < 0.9 < I4 < 0.99 < I5 ≤ 1

Table 2: Criticality statistics for PapaBench
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block in the CFG as the length of the longest path passing through a basic block divided
by the global WCET. This gives a value between 0 and 1 that indicates how relevant a
given basic block is in relation to the WCET of the program. This information can then
be used to guide program optimizations in order to improve the WCET of the program.

However, the metric is not only interesting for program optimization. In particular the
distribution of the Criticality values in a real-time program is highly interesting. Table 1
and 2 show profiling results of several WCET analysis problems for the Debie1 and
PapaBench real-time programs. From the columns I0, ..., I5, the number of basic blocks
in six predefined Criticality intervals can be seen. The variation of block distributions
hints at an underlying difference of program structure with regard to WCET-critical code.
A surprisingly large number of basic blocks is relatively unimportant with a Criticality
value below 0.8. Only 13% of the basic blocks of the debie-4a benchmark, for instance,
are highly critical. Over all analysis problems of Debie1 only 54% of the basic blocks
have a Criticality above 0.80. Considering all analysis problems, in the mean 67% of the
basic blocks are highly critical, i.e., have a Criticality above 0.8.

Considering this observation, one could ask whether it would be possible to improve
the precision and computation time of a WCET analysis by excluding the uncritical code
parts from the analysis? This is precisely the goal of this work. We exclude uncritical
code parts by pruning the control-flow graph and iteratively deriving a refined, but still
provably correct, WCET bound. A detailed description of this approach follows in the
next section.

3 Algorithm

In a nutshell, iterative graph pruning (IGP), presented as pseudo code in Algorithm 1,
performs WCET analysis by iteratively merging a sequence of basic block sets (Si),
terminating when an upper bound (ubwcet) is found to be a safe bound for the input
program.

The blocks are then inserted into sets Si based on the path length. The respective
path length of a set can later be retrieved by longestpath(Si). The sets Si are generated
by computing the longest path going through every basic block within G [2, 3]. At every
iteration i, the vertex-induced subgraph G′ is created from the union of the i first (and
most critical) sets Si (l. 7 – l. 8). G′ is then targeted by a full WCET analysis run
(WCEToverAny l. 13), which entails abstract interpretation on the program’s subgraph G′

to generate the weighting function W ′, followed by a longest path search. WCEToverAny,
additionally, forces the longest path search to only consider those paths passing through
blocks in the current Si. All other paths in G′ are uninteresting, since these paths have
already been bounded in the previous iterations. Note that G′ may not contain any such
path that is feasible. WCEToverAny then returns 0 and the current upper bound remains
unchanged. If, at the end of an iteration, the current upper bound (ubwcet) is less than
the just computed bound (WCETi), it needs to be updated (l. 10).

The algorithm terminates at the latest when all sets have been considered (i.e., V ′ = V

and G′ is the same as the graph of the original program) or before when the termination
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Algorithm 1 Graph-pruning algorithm

Require: G = (V,E, r, t) CFG of the input
program.

S1, . . . , Sn Block-sets sorted by
longest path length, from
highest to lowest.

1: ubwcet = 0 ⊲ Will increase until a safe WCET bound

2: for i = 1→ n do

3: ⊲ Terminate when no longer paths can exist
4: if ubwcet ≥ longestpath(Si) then

5: return ubwcet

6: ⊲ Construct and analyze a subgraph
7: Let V ′ ← S1 ∪ · · · ∪ Si, E

′ ← E ∩ V ′ × V ′ in

8: G′ ← (V ′, E′, r, t)
9: WCETi ← CalcPrunedWCET(G′, Si, ubwcet)

10: ubwcet ← max(WCETi, ubwcet)

11: return ubwcet

12: function CalcPrunedWCET(G′, Si, ubwcet)
13: return WCEToverAny(G′, Si)

condition (l. 4) is met. The latter case occurs when the remaining longest path induced
by the remaining Sis is shorter than the current WCET bound ubwcet. We will prove
that ubwcet is a valid bound for G in the next section.

Example 1. Consider the CFG shown in Figure 1, where weights are shown for each
basic block along with the longest paths passing through the respective blocks. Furthermore,
assume that the number of loop iterations at BB4 depends on a variable x either assigned
to 10 in BB1 or 7 in BB2.

A first, unmodified WCET analysis discovers both assignments to x. Thus, it derives
a loop bound of 10 iterations for BB4. The resulting longest path (p1) has length 60 and
covers r, BB0, BB2, BB4, BB5 and t. These blocks are thus assigned to the basic block set
S0. The second longest path passing through a node not covered by p1 is p2, with length
56. Since all blocks on p1 are already assigned to S0, the only new block of p2 is assigned
to S1 = {BB1}. The same applies to path p3 and block set S3 = {BB3}.

Our Algorithm starts by reanalyzing subgraph G1 induced by S0 shown by Figure 2. The
analysis now discovers that there is only a single assignment to x, limiting the number of
loop iterations at BB4 to 7. In addition, a more precise estimation of the local execution
time within the loop is derived, i.e., W(BB4) is now 4 instead of 5. The initial length of
60 for p1 alone was heavily overestimated, since the longest path in G1 is much shorter.
This results in an upper bound ubwcet of 38. The algorithm continues to iterate at this
point since the path length associated with S1 is longer than the current upper bound.
The second iteration leads to the construction of G2 induced by S0∪S1 (see Figure 2). A
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r

BB0 W(BB0) = 2

BB1W(BB1) = 3 BB2 W(BB2) = 7

BB3W(BB3) = 1 BB4 W(BB4) = 5

BB5 W(BB5) = 1

t |p1| = 60

|p2| = 56

|p3| = 7

Figure 1: A weighted CFG and its longest paths (see Example 1)

new WCET analysis run is forced to consider only those paths passing through BB1 and
finds a loop bound of 10 iterations. This results in an upper bound ubwcet of 56. Since the
upper bound now represents a path longer than any that could be uncovered by including
the next block set S3, the algorithm terminates with a more precise WCET bound of 56
instead of the initial 60.

3.1 Correctness

To show the correctness of our approach, we have to consider the impact of graph pruning
on the typical phases of a WCET analysis run. We assume, without loss of generality,
that WCET analysis is performed in two phases [17]. A first phase, based on abstract
interpretation [6], delivers local worst-case execution times for each basic block. In the
second phase, a longest path search [10, 13] is performed on a weighted CFG, computed
from these local execution times.

In our approach, abstract interpretation is applied to a subgraph G′ of the original

r

BB0W(BB0) = 2

BB2W(BB2) = 7

BB4W(BB4) = 4

BB5W(BB5) = 1

t

(a) 1st iteration

r

BB0 W(BB0) = 2

BB1 W(BB1) = 3BB2

BB4 W(BB4) = 5

BB5 W(BB5) = 1

t

(b) 2nd iteration

Figure 2: Weighted CFGs formed during Iterative Graph Pruning.
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CFG G of the input program. In order to show correctness we thus have to investigate
some properties of the subgraph G′.

Lemma 1. A subgraph G′ = (V ′, E′, r, t) constructed by Algorithm 1 is connected, i.e.,
for every CFG node v′ ∈ V ′ a path from r to t, passing through v′, exists.

Proof. This follows immediately from the way subgraphs are constructed. Remember
that the blocks in the subgraph G′ of the m-th iteration are computed by unifying all
the basic block sets Si, i ∈ {0...m}, whose path lengths are longer than the path length
associated with Sm, i.e., V ′ =

⋃
i∈0..m Si.

Assume G′ is not connected, i.e., a CFG node v′ exists that is not reachable from the
root node r in G′. Since v′ ∈ V ′ it follows that a corresponding path p = (r, ..., n′, ..., t)
has to exists in the original graph G. The length of this path corresponds to the path
length associated with Sm. As G′ is not connected, at least one node of p is not in V ′.
However, this is impossible, since the existence of p implies that this node either is in Sm

or another set Sk, k < m. The subgraph G′ is thus connected.

Lemma 2. Abstract interpretation applied to a subgraph G′ delivers correct results with
respect to the potential execution paths through G′.

Proof (sketch). A sound analysis based on abstract interpretation delivers sound results
with regard to potential executions of a program, e.g., represented by its CFG G. When
applying the same analysis to a subgraph G′, the set of potential executions is reduced
(excluding those executions that do not lead to the sink node t). Since the analysis is
sound, this approximation trivially remains sound with regard to the executions repre-
sented by G′. Note, however, that the analysis result is not guaranteed to be sound with
regard to all executions of the original program.

The previous two lemmas ensure that, independent of the concrete analysis performed,
the local execution times obtained by abstract interpretation in the WCET analysis tool
are sound with respect to a subgraph G′. It remains to show that the WCET bound
computed during the longest path search by Algorithm 1 is a safe bound.

Lemma 3. The worst-case execution time bound computed by Algorithm 1 for a subgraph
G′ is safe.

Proof. Consider the subgraph G′ and its basic block set Sm of the m-th iteration as well
as the subgraph G′′, with its bound WCET(G′′), of the previous iteration.

First, assume that the longest path p through G′ represents a valid path in G′′, i.e., p
does not contain any node in Sm. In relation to the previous iteration, the current WCET
estimate for p might increase, due to overestimation of the local worst-case execution
times, i.e. WCET(G′′) ≤ WCET(G′). However, irrespective of the WCET computed
for G′, the bound established by the previous iteration for G′′ still holds. Paths of this
structure are thus uninteresting, as the length of all paths in G′′ has been bounded
by the previous iteration. It remains to bound those paths in G′ that do not have a
corresponding path in G′′. The longest path search thus only needs to consider paths
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containing at least one node in Sm.

Three cases for the longest path p need to be considered:

1. |p| > WCET(G′′):
Since |p| is longer than the previously established WCET bound, it follows that
WCET(G′) = |p|.

2. |p| ≤WCET(G′′):
As the length of p is not longer than the previously established bound, it follows
that WCET(G′) = WCET(G′′). The longest path through G′′ also represents the
longest path through G′, ignoring any additional overestimation caused by blocks
in Sm.

3. No feasible path containing a block in Sm exists:
This case happens when the abstract interpretation finds that no execution in G′

exists that passes through a block in Sm, i.e., none of the conditions of the branches
leading to a block in Sm can be satisfied. It follows that WCET(G′) = WCET(G′′).
Note that paths over these blocks might become feasible in later iterations, e.g.,
when code making the, yet unsatisfiable, conditions satisfiable is added.

Using induction, we can finally prove that Algorithm 1 delivers safe WCET bounds
for all subgraphs considered during the iterative processing.

Theorem 1. Algorithm 1 computes a safe WCET bound.

Proof. This follows immediately from the previous lemmas and the termination condition
of the algorithm.

The lemmas prove that applying abstract interpretation on subgraphs is sound and
that the algorithm computes safe bounds with respect to the subgraphs considered during
the iterative processing.

It remains to show that no other paths exist, which could be longer than the WCET
bound delivered by the last iteration. This is guaranteed by the order in which the sets
of blocks are processed and the termination condition (Algorithm 1, l. 4). Together these
ensure that all basic blocks not yet considered by the iterative refinement can only induce
paths that are shorter than the computed bound.

3.2 Complexity

The number of sets Si is an upper bound on the iterations that will be performed by IGP.
The former is again bounded by the number of basic blocks in the input program. Since
its iterations are linear in the number of blocks, IGP is dominated by the complexity of
the WCET analysis, i.e., abstract interpretation and longest path search.

The sets Si, which are assumed as input in Algorithm 1, can be efficiently computed us-
ing the criticality algorithms [2, 3]. This may be performed either during a preprocessing
step, or on demand, while the graph pruning algorithm iterates.
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Algorithm 2 WCET computation function CalcPrunedWCET using two-stage anal-
ysis

Require: G′ = (V ′, E′, r, t) . . . A CFG.
Si . . . The set of newly added blocks.
ubwcet . . . The current upper bound of the WCET.

1: WCETi ← WCEToverAnyFast(G′, Si)
2: if WCETi > ubwcet then

3: WCET′
i ← WCEToverAnyPrecise(G′, Si)

4: return WCET′
i

5: return WCETi

3.3 Algorithm Variants

It may be the case that the WCET analysis tool targeted by graph pruning, can be
configured for different levels of precision. This usually involves a trade-off between
tightness (precision) of the WCET bound and longer analysis runtime. IGP can be used
to incorporate analyses with different precision. Running the higher-precision analysis
on a previously pruned graph would be a straight-forward way of further improving
the WCET bound. But Algorithm 1 can also be modified to make use of multiple
levels of precision directly. To do this, we replace the CalcPrunedWCET function in
Algorithm 1 with the variant given in Algorithm 2. This algorithm performs a second,
more precise WCET analysis (WCEToverAnyPrecise) to lower the estimate of WCETi

for the current graph G′, whenever the imprecise analysis (WCEToverAnyFast) would
increase the overall WCET bound.

Another valid, but trivial way of incorporating a higher-precision analysis into graph
pruning, would be to run WCEToverAnyPrecise on the pruned subgraph exactly once after
the iterative processing. This would reduce the computational overhead and further lower
the WCET bound (down to the path length of the next block set). One could even avoid
the iterative processing entirely, by heuristically constructing a subgraph and applying
the precise analysis to this subgraph. This would foremost reduce the computational
overhead and leave the burden of reducing overestimation on the precise WCET analysis.

4 Evaluation

We start by giving a complete example of running iterative graph pruning on the first
problem from the Debie1 benchmarks, which has no loops and 83 basic blocks. We then
extend our evaluation to a number of WCET benchmarks using standard Iterative Graph
Pruning (IGP) and its two-stage variant (IGP-TS).

4.1 Case Study: debie-1

We start by analyzing the original program represented by its CFG G. This yields a first
valid global WCET bound in cycles (denoted by WCET(G)).
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Set Si longestpath(Si)

S0 43 1,621
S1 1 1,613
S2 1 1,608
S3 5 1,601
S4 1 1,592
S5 4 1,585
S6 8 1,560
S7 1 1,472
S8 3 1,456
S9 3 1,415
S10 3 1,352
S11 3 1,324
S12 1 1,231
S13 2 657
S14 1 321

Table 3: Criticality based basic block sets for debie-1

Pre-run: WCET(G) = 1621

At the same time we can perform a basic-block-level WCET profiling according to the
definition of criticality. This yields, for every block b in the CFG G, the maximum length
(a value in the range [0,WCET(G)]) of all paths going through b. Blocks with a value
close to the global WCET are considered critical, while those close to 0 are uncritical.
Based on their longest paths, we now insert blocks into several sets, so that blocks with
the same path length end up in the same set. In our example 15 such sets exist, their
path length (longestpath(Si)) and cardinality is given in Table 3.

The pruning algorithm kicks off with a WCET analysis, but this time considers only
the blocks on the global WCEP, i.e., the blocks in S0. Using these blocks a vertex-induced
subgraph G1 is created and its WCET bound is analyzed.

Iteration 1: G1 = S0 WCET(G1) = 334

WCET(G1) is drastically lower than the original WCET, even though all blocks of the
original WCEP are contained in G1. Using abstract interpretation the WCET tool has
derived that the path is actually infeasible, i.e., no legal execution for the path exists. It
is necessary to add more blocks back to the program at this stage. And since we suspect
that those blocks with longer paths have a larger impact on the attainable WCET bound,
we select the most critical blocks available, namely S1.

Iteration 2: G2 = G1 ∪ S1 WCET(G2) = 334
Iteration 3: G3 = G2 ∪ S2 WCET(G3) = 334
Iteration 4: G4 = G3 ∪ S3 WCET(G4) = 1423

Adding S1 to the graph did in fact not change the current WCET bound, neither did
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S2. But after adding S3, a considerably longer path becomes feasible and our current
WCET bound jumps to 1423 cycles. Let us pause for a moment and consider what we
have done so far. G4 contains the most critical code (S0 ∪ · · · ∪ S3), it contains 42 basic
blocks (compared to 80 for the whole program). Blocks from eleven sets have not yet
been added and we have a current bound of WCET(G4) < WCET(G). Is this already
a valid WCET bound for the original problem? No, looking at the remaining sets, we
can see there are still blocks in sets S4, . . . , S8, which may be part of a longer path in
an extended subgraph, i.e., longestpath(Si) ≥ 1423, 4 ≤ i ≤ 8. With this in mind, we
resume adding blocks with S4.

Iteration 5: G5 = G4 ∪ S4 WCET(G5) = 1525
Iteration 6: G6 = G5 ∪ S5 WCET(G6) = 1525
Iteration 7: G7 = G6 ∪ S6 WCET(G7) = 1525

When we are about to add set S7, we notice that in the worst case, it would uncover
a path with length 1472. Since the WCET bound changed again in iteration 5, this is
below the current value of 1525 and thus would have no impact. This signals termination
for our algorithm. At this point, blocks from all sets are either already part of the current
graph, or do not contain blocks which could enable a path longer than 1525 cycles. Our
result is the pruned graph G7, which is a WCET-bound-maintaining subgraph of the
original program. By using this graph, we have reduced the initial WCET bound of the
analysis by 96 cycles (∼ 6%).

4.2 Setup for Experiments

We evaluate our approach using the commercial WCET analysis tool aiT (a3 version
12.10i) and well-establisheded WCET benchmarks: The Mälardalen benchmark suite1,
Debie1 [8] (version e) and PapaBench [12] (version 0.4). The analysis problems for the
latter two are taken from the WCET Tool Challenge 2011.

The prototype implementation of graph pruning that we use for this evaluation, treats
the WCET analysis tool as a black-box and thus works with an unmodified version of
aiT. The graph pruning is realized through scripting and the AIS annotations (IS NEVER

EXECUTED and FLOW). This means that due to our setup, all information computed by
an iteration is discarded and not reused by the following iteration. Thus, any analysis
runtime results would be dramatically increased. We discuss this shortcoming of our
evaluation in Section 4.5).

We apply the two graph pruning variants to an overall of 37 analysis problems and
compare the attainable WCET bound with the original result of aiT. The first variant
(IGP), performs iterative graph pruning using standard IPET (Algorithm 1). The second
variant (IGP-TS), uses the two-stage WCET computation (Algorithm 1 with the extension
in Algorithm 2). Here, the standard computation is potentially refined by a second, more
precise, but also more expensive, WCET analysis using aiT’s prediction file technique [16].

We additionally examine properties of the analysis problem that have a direct influence
on overestimation. These are (1) hardware splits, a measure for the amount of dupli-

1http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
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Figure 3: WCET bounds per iteration for the f1a benchmark using Iterative Graph Prun-
ing. (IGP, lower is better)

cated states in the presence of unpredictable hardware behavior (i.e., caches, branch
prediction), and (2) the size of the analysis problems at different stages (i.e., subgraph
size).

4.3 Iterative Graph Pruning

Table 4 summarizes the WCET bound improvement and aggregates it by benchmark
suite. The selected Mälardalen programs, especially the ones representing algorithmic
cores with almost single-path execution behavior, not surprisingly do not benefit from
graph pruning. Their WCET bound improvement is 2% at best. However, the larger
application-like programs, Debie1 and PapaBench, benefit from graph pruning and some
of their analysis problems have their WCET bound reduced significantly. When we look
at f1a from PapaBench in detail, we can see in Figure 3 that within the first 20 iterations,
the upper bound (ubwcet) leaps to a level close to its final value. At this point, the most
critical basic block sets have been added to the subgraph and WCET analysis returned a
good candidate for the actual global WCEP. Step sizes subsequently decrease and from
iteration 35 on, the upper bound (ubwcet) roughly holds while more blocks are added to
the IGP subgraph (see Figure 4).

Another group of problem instances does not exhibit properties that are exploitable
by graph pruning. These can be identified in Table 5 by their low number of iterations:
after one or two iterations, IGP terminates since all (feasible) blocks are either on the
global WCEP, or there is no interference between WCET-critical and unrelated code.

There is also a third class of benchmark problems, which exhibits a high number of
iterations without a significant improvement of the WCET bound. Studying the most
severe cases (problems a2a and a2b from PapaBench), we have found that almost all of
the WCEPs found in subgraphs are infeasible on their own (i.e., their feasibility depends
on blocks in other block sets). This is likely caused by a particular program structure
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WCET Refinement
Suite Contains Algo. Improved max min mean

debie 16 IGP 12 −6.43% 0% −1.74%
mdh 11 IGP 7 −2.15% 0% −0.58%
papa 10 IGP 6 −3.73% 0% −1.95%

debie 16 IGP-TS 10 −5.34% 0% −0.82%
mdh 11 IGP-TS 5 −1.28% 0% −0.26%
papa 10 IGP-TS 4 −2.83% 0% −1.03%

Table 4: WCET Reduction using Iterative Graph Pruning (Summary)

and the WCET analysis failing to exclude infeasible paths from the longest path search
(flow facts).

For all non-trivial benchmarks (two IGP iterations or more), we see that the minimal
(and average) reduction of hardware splits is high (see Figure 5). Average subgraph
sizes (Figure 6) are likewise significantly smaller than their originals. This tells us that
overestimation is being effectively addressed by IGP. At the same time it can benefit from
analysis problems, which are roughly half the original size. In Table 5 we present the
detailed results from graph pruning using the IGP algorithm. It contains the number of
iterations in column “Iter.”, the number of unique WCET paths encountered in column
“|P|”, and a comparison of graph sizes before and after pruning in the last two columns.
Note that the number of infeasible blocks is contained in |V | and will always be pruned.
IGP improves WCET bounds up to 6% compared to aiT’s result on the original program.
The average improvement among non-trivial benchmark problems is 2%.
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WCET (cycles) Graph size (nodes)
Benchmark Original IGP Refinement Iterations |P| |V | |V ′|

debie-1 1,621 1,525 −5.92% 7 6 83 63
debie-2b 566 534 −5.65% 2 2 23 16
debie-2c 489 489 0.00% 1 1 23 14
debie-3a 5,094 5,047 −0.92% 5 5 74 57
debie-3b 28,515 28,451 −0.22% 8 9 74 59
debie-3c 29,227 29,163 −0.22% 8 9 74 59
debie-4a 4,913 4,843 −1.43% 4 4 285 43
debie-4b 1,789 1,674 −6.43% 4 5 285 32
debie-4c 910 891 −2.09% 2 2 285 17
debie-4d 968 968 0.00% 1 1 285 16
debie-5a 6,119 6,047 −1.18% 6 6 138 120
debie-5b 112,538 112,467 −0.06% 7 7 138 130
debie-6a 44,273 44,007 −0.60% 12 10 376 192
debie-6b 44,273 44,007 −0.60% 12 10 376 192
debie-6c 63,133 62,145 −1.57% 13 10 376 155
debie-6d 46,337 46,049 −0.62% 12 10 376 194
mdh-compress 26,697 26,601 −0.36% 8 8 92 84
mdh-expint 793,236 785,573 −0.97% 3 3 25 19
mdh-fft1 651,767 651,249 −0.08% 98 77 491 455
mdh-lcdnum 4,162 4,162 0.00% 1 2 22 16
mdh-ludcmp 973,441 971,502 −0.20% 104 104 430 423
mdh-minver 298,523 292,108 −2.15% 103 104 466 457
mdh-prime 194,136 194,055 −0.04% 3 3 23 22
mdh-qurt 649,934 649,434 −0.08% 101 98 423 408
mdh-select 261,214 260,317 −0.34% 11 12 99 93
mdh-sqrt 219,363 219,074 −0.13% 98 99 518 449
mdh-statemate 24,145 23,657 −2.02% 70 71 420 363
papa-a1 8,551 8,247 −3.56% 101 92 626 484
papa-a2a 81,656 81,187 −0.57% 177 146 1,522 944
papa-a2b 100,939 100,190 −0.74% 199 163 1,522 1,079
papa-a3a 9,138 8,922 −2.36% 65 64 981 255
papa-a3b 28,193 27,691 −1.78% 146 139 981 746
papa-a4 11,104 10,879 −2.03% 44 38 334 253
papa-a5 20,545 20,320 −1.10% 96 97 438 426
papa-a6 29,092 28,006 −3.73% 118 114 682 608
papa-f1a 11,542 11,128 −3.59% 60 47 285 269
papa-f2 237 237 0.00% 1 1 8 4

Table 5: Detailed results for Iterative Graph Pruning (IGP)
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WCET (cycles) Graph size (nodes)
Benchmark Original IGP-TS Refinement Iterations |P| |V | |V ′|

debie-1 1,507 1,479 −1.86% 7 9 83 63
debie-2b 520 520 0.00% 2 2 23 16
debie-2c 474 474 0.00% 2 2 23 15
debie-3a 4,787 4,735 −1.09% 6 10 74 58
debie-3b 24,756 24,742 −0.06% 8 15 74 59
debie-3c 25,348 25,334 −0.06% 8 15 74 59
debie-4a 4,810 4,783 −0.56% 4 5 285 43
debie-4b 1,630 1,543 −5.34% 4 5 285 32
debie-4c 877 877 0.00% 4 4 285 20
debie-4d 957 957 0.00% 1 1 285 16
debie-5a 5,784 5,753 −0.54% 8 15 138 123
debie-5b 78,338 78,307 −0.04% 9 18 138 133
debie-6a 42,945 42,680 −0.62% 12 19 376 192
debie-6b 42,945 42,680 −0.62% 12 19 376 192
debie-6c 61,042 60,129 −1.50% 13 14 376 155
debie-6d 44,677 44,390 −0.64% 12 19 376 194
mdh-compress 26,344 26,297 −0.18% 8 15 92 84
mdh-expint 792,298 784,693 −0.96% 3 3 25 19
mdh-fft1 589,137 588,871 −0.05% 103 163 491 468
mdh-lcdnum 4,140 4,140 0.00% 2 5 22 21
mdh-ludcmp 899,460 899,236 −0.02% 105 209 430 426
mdh-minver 275,957 275,805 −0.06% 104 209 466 458
mdh-prime 194,053 194,031 −0.01% 3 4 23 22
mdh-qurt 595,432 595,085 −0.06% 104 200 423 416
mdh-select 222,750 222,215 −0.24% 12 25 99 99
mdh-sqrt 194,497 194,471 −0.02% 127 255 518 503
mdh-statemate 22,173 21,890 −1.28% 98 195 420 409
papa-a1 7,050 7,049 −0.01% 141 267 626 581
papa-a2a 68,641 68,340 −0.44% 200 337 1,522 987
papa-a2b 84,785 84,280 −0.60% 210 347 1,522 1,111
papa-a3a 8,488 8,347 −1.66% 70 136 981 262
papa-a3b 24,063 23,984 −0.33% 164 312 981 780
papa-a4 9,473 9,288 −1.95% 57 100 334 278
papa-a5 19,020 18,965 −0.29% 104 205 438 434
papa-a6 25,045 24,507 −2.15% 122 236 682 635
papa-f1a 10,359 10,066 −2.83% 71 114 285 284
papa-f2 236 236 0.00% 1 1 8 4

Table 6: Detailed results for two-stage Iterative Graph Pruning (IGP-TS)
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4.4 Two-stage Iterative Graph Pruning

To evaluate the two-stage approach of iterative graph pruning (IGP-TS), we make use of
the prediction file (PF) based IPET solver in aiT as a second stage analysis (i.e., for the
WCEToverAnyPrecise invocation in Algorithm 2). When performing PF-based WCET
computation, the timing information during longest path search is not restricted to a
single WCET for each basic block, but may encompass multiple architectural states [16].
Tightening WCET bounds in this way comes at the cost of —depending on program
size— much larger ILP problems and thus time needed for solving. (Note that resource
demand, i.e., memory, for the larger problems of papabench on a related out-of-order
PowerPC architecture is bordering on infeasibility.) Fast WCET analysis remains un-
changed with regard to IGP.

The WCET bound improvement of IGP-TS, compared to the PF-enabled analysis as
a baseline, behaves similar to that of IGP. Benchmark problems, for which the WCET
bound was improved by IGP, also improve by IGP-TS, but the effect is less pronounced
(see Table 4). We thus conclude that our approach is profitable even compared to a
state-of-the-art WCET analysis tool using its most sophisticated analysis technique. How
its profitability increases inversely proportional to the use of mechanisms that prevent
overestimation.

The reduction of hardware splits and graph sizes measured over all iterations also
behaves similar (compare IGP and IGP-TS in Figures 5 and 6), although it fails to “cut off”
sources of overestimation in the same was as IGP does. Furthermore, as we expected, the
number of unique WCEPs found by IGP-TS is higher (see |P| in Table 5 versus Table 6).
This is due to the more precise analysis being used. For the same reason, we can see an
increase in the number of iterations.

4.5 Discussion

We have evaluated graph pruning using a state-of-the-art, commercial WCET tool. aiT
uses powerful abstract interpretation and is able to produce good WCET bounds on its
own. Even so, graph pruning can eliminate sources of overestimation and significantly
tighten the WCET bound. While we can configure aiT to analyze subgraphs and extract
all results we need from it, our setup is only suitable as a proof-of-concept. The analysis
tool is treated as a block box, which leads to needless overhead that could be avoided.
We thus do not present detailed measurements of the analysis time here. However, even
with these short-comings we observed an increase in analysis time by a factor of 9 on
average (tests were performed on an AMD Opteron 8356 at 2.3 GHz, running Linux
Kernel version 2.6, with CPLEX version 10 solving the IPET ILP problems).

We expect that most of the analysis overhead can, in fact, be eliminated by designing
the WCET analysis to take advantage of the iterative processing. The overhead of per-
forming a complete run of abstract interpretation on every iteration can, for instance,
be avoided. Abstract interpretation usually is performed by searching for a fixed-point.
Adding basic blocks, as done by our algorithm, can easily be handled by this approach.
The fixed-point search can continue from the abstract states computed for the previous
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iteration to quickly derive a new fixed-point for the current subgraph. Other forms of
incremental analysis should equally reduce the overhead of performing a longest path
search on structurally similar subgraphs. These techniques, combined with smaller prob-
lem sizes (due to smaller subgraphs and reduced hardware splits), promise to even reduce
the analysis overhead, compared to a full analysis run using aiT’s prediction file tech-
nique. We even observed this behavior in our tests for IGP-TS and the a2b benchmark.
Despite an increase in the analysis time by a factor of 14 for the abstract interpretation,
a reduction of the ILP solving time lead to an overall reduction of the analysis time of
about 15%.

We observed that our technique addresses the problem of overestimation very well,
in particular during early iterations. However, we also observed that in many cases the
overestimation grew fast, often outweighing large initial gains. The main problem is that
the subgraphs steadily grow larger. We could address this problem by restricting the
subgraphs to only those nodes reachable from the current basic block set (Si). However,
one could similarly change the strategy for growing subgraphs, e.g., by estimating the
impact on the number of hardware splits. In a similar way, neighboring basic block sets
may be merged in order to avoid excessive iteration counts.

5 Related Work

We divide related approaches for tightening WCET bounds roughly by the main tech-
nique they employ. Since most methods —ours included— are complementary to each
other and thus can be combined within an integrated analysis, some natural overlap
occurs.

5.1 Program Slicing

Several pruning techniques, similar in spirit to our technique, have been proposed in
the past based on program slicing [18]. The basic idea of program slicing is to improve
the precision and the computational overhead of static program analyses by discarding
program statements that are irrelevant to the goal of the analysis. Consider, for instance,
the case when the goal of a static analysis is to determine the value of a given variable in
a program. When forming a slice for that particular variable, only those statements are
considered during the analysis that directly and indirectly contribute to the computation
of that variable. All other statements are ignored. The goal in our approach is to improve
the analysis of the WCET itself, our technique thus can be seen as a form of program
slicing on the timing domain.

Sandberg et al. [14], for example, propose to use program slicing to improve the static
analysis of flow facts. They construct program slices based on either all conditions of
branches in a program, on all loop-exit conditions, or on the loop-exit conditions of
a particular loop. Based on the computed slices, flow facts, such as loop bounds, are
computed. In contrast to our work, the focus here is on deriving flow facts only, regardless
of the relevance or impact to the final WCET. Their technique can, however, be combined
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with our approach. This would, for instance, allow to derive flow facts that are only valid
with respect to the current subgraph under consideration.

A similar approach is proposed by Lokuciejewski et al. [11]. They combine abstract
interpretation, polytope models, and program slicing to derive precise loop bounds. The
approach again does not consider the relevance of the respective loops under analysis
with regard to the final WCET.

5.2 Infeasible-Path Elimination

Bang and Kim [1], similar to our technique, propose an iterative approach to refine the
attainable WCET using standard IPET. The basic idea is to perform a regular WCET
analysis run. The resulting WCEP is subsequently checked for feasibility and, in the case
of an infeasible WCEP, additional constraints are added to the IPET problem to exclude
the path. This process is repeated until a feasible path is encountered. It is important to
note that the presented feasibility checks are conservative and only consider individual
basic blocks and pairs or blocks, but not the entire path. The major problem of this
approach is that the refinement is based on individual paths through the program, whose
number is potentially exponential in the number of conditional branches in the program.
The additional constraints are, furthermore, only applied during the final IPET run.
Contrary to our approach, the technique thus cannot improve the precision of previous
analysis phases, such as the cache- or pipeline analysis.

Zwirchmayer et al. [9] propose a related scheme called WCET Squeezing. The authors
iteratively check the feasibility of the current WCEP using symbolic execution and ex-
clude paths found to be infeasible from the IPET problem. In contrast to Bang and Kim,
this technique considers the entire path and may thus potentially derive more complex
constraints. The technique similarly does not allow to improve the precision of other
analysis phases than the final IPET. To its advantage, WCET squeezing is an anytime
algorithm, i.e., when interrupted at any time, a possible up-to-then achieved refinement
is sound. Our current graph pruning algorithm does not have the anytime property, in
fact it needs to run until the WCET bound from a pruned subgraph has been proved
valid.

5.3 Abstract Interpretation

We evaluated graph pruning using AbsInt’s aiT WCET analyzer, which makes use of
abstract interpretation for its value analysis. While in this specific setting, the precision
of value analysis benefits from the smaller graphs that we provide through pruning,
context-sensitive abstract interpretation techniques [6, 7] themselves, in fact, share the
same goal with us. They are used for the automatic computation of control-flow bounds
(i.e. loop bounds or flow facts) that ultimately aim to tighten the WCET bound. The
challenge for abstract interpretation is to cope with an overwhelming combination of
program-, pipeline-, and cache states through safe approximation of values withing their
domain and the merging of related hardware states. Efficient widening (and narrowing)
operations are essential for analysis precision. [5]
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The approach presented here is inspired by the Criticality metric proposed by Brandner
et al. [2]. The metric assigns a numeric value in the interval [0, 1] to each basic block of a
real-time program, where values close to 0 indicate code that is irrelevant and values close
to 1 indicate code that is critical to the final WCET. We adopt the idea of discovering
the longest path passing through basic blocks to refine the attainable WCET bound.
The authors’ algorithm to compute Criticalities on-demand has been adopted for our
approach [3].

6 Conclusion

Exploiting problem structure has proven to be a key element in many optimization prob-
lems. We argue about the structure of a program’s CFG and its properties specifically
with regard to WCET analysis.

WCET analysis tools have to continuously restrict problem size, in order to meet space
as well as time constraints and maintain feasibility: (1) During abstract interpretation,
the overwhelming combination of program-, pipeline-, and cache states may require merg-
ing. (2) Solving the longest path problem, while accounting in detail for all processor
states, again is only feasible up to a certain magnitude of states (variables). The down-
side of these techniques is, that the precision of the attainable WCET bound is reduced.
While other approaches for tightening an IPET-based WCET bound are designed to re-
fine the worst-case path in a post-processing step, graph pruning can be used in order to
decrease problem size and increase precision during WCET analysis. Compared to exist-
ing program slicing techniques, our approach extends to the lower-level timing analysis
too. With the algorithms given above, we further demonstrated, that WCET profiles are
a suitable first guide to this search.
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