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Abstract

A thin plate, excited by a harmonic external forcing of iragieg amplitude, shows transitions
from a periodic response to a chaotic state of wave turbelemy analogy with the transi-
tion to turbulence observed in fluid mechanics as the Regnalenber is increased, a generic
transition scenario for thin vibrating plates, first expegntally observed, is here numerically
studied. The von Karman equations for thin plates, whiatiude geometric non-linear ef-
fects, are used to model large amplitude vibrations, anchargg-conserving finite tierence
scheme is employed for discretization. The transition agerinvolves two bifurcations sepa-
rating three distinct regimes. The first regime is the peciogeakly non-linear response. The
second is a quasiperiodic state where energy is exchangeddieinternally resonant modes. It
is observed only when specific internal resonance reldtipssare fulfilled between the eigen-
frequencies of the structure and the forcing frequencyemtise a direct transition to the last
turbulent state is observed. This third, or turbulent, mesgyis characterized by a broadband
Fourier spectrum and a cascade of energy from large to smaaklengths. For perfect plates
including cubic non-linearity, only third-order interrr@lsonances are likely to exist. For imper-
fect plates displaying quadratic nonlinearity, the enaagghanges and the quasiperiodic states
are favored and thus are more easily obtained. Finally,utimitent regime is characterized in
the light of available theoretical results from wave tudnde theory.

Keywords: transition scenario, thin plate, wave turbulence, biftioza

1. Introduction

Turbulence and wave turbulenc@urbulence has always been a key research area in fluid me-
chanics and is still considered as a partly unsolved (andapsr unsolvable) problem due to
fundamental limitations of analytical tools in the casemfrdinite hierarchy of cumulant equa-
tions [1, 2]. Zacharov [3], however, introduced a so-callale (or weak) turbulence (WT)
theory which may be arrived at by relaxing some of the assiomgthat are particularly rele-
vant to fully developed hydrodynamics turbulence (in gatar the presence of intermittency),
but by retaining the main assumption of an energy flux thrdegigthscales allowing for the
appearance of the Kolmogorov turbulence spectrum. The amsomptions of WT are that
the nonlinearity is weak, and that waves persist in the dycabehaviour of the system [4].
With this in mind, closed equations, the so-called kinetjaaions, are analytically accessible,
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and hence allow for quantitative predictions. Becausee&séftractable simplifications, the WT
theory has been applied successfully to numerous physist¢ras including capillarity and
gravity waves on the surface of liquids [5, 6, 7, 8], plasnt§sqdptics [10] and magnetohydro-
dynamics [11].

Turbulence in a solidwWave turbulence theory can be applied to vibrating stresttinat can dis-
play, when subjected to large-amplitude motions under ag&ac non-linearity, a broadband
Fourier component in the power spectrum of the displacemmemealing turbulent behaviour.
In the musical context, the perceptual importance of trasuiee has been long since recognized
in instrument design; for example, the broadband Fouriempmment has been exploited for
a long time in theaters to simulate the sound of thunder biisgavigorously large metallic
plates. It is also the means of explaining the bright shinmgesound of gongs and cymbals
[12, 13, 14, 15, 16]. From the physical point of view, thisnation state was first studied in the
framework of chaotic behaviour for dynamical systems [4/,1B, 19]. However, convergence
of traditional indicators of chaotic dynamics resultingrfr low-dimensional dynamical systems
(e.g. correlation dimension and Lyapunov exponents) has beamdffrom experiments only
recently in a series of papers by Nagéaal. [20, 21, 22] where a shell of small dimensions was
excited at moderate amplitudes, so that turbulent behasaot excited. Other experimental
studies [23, 24, 13], as well as numerical results [25] regabdificulties in obtaining converged
values for the correlation dimension dadthe Lyapunov exponents. Recently, wave turbulence
theory has been applied to vibrating plates described bydhekarman kinematical assump-
tions, hence allowing for a quantitative prediction of tinergy repartition through lengthscales
[26], and two diferent experimental set-ups with very thin plates of largeetisions precisely
accounted for turbulent behaviour [27, 28, 29]. More spedilfy, no intermittent behaviour
was reported [27] and the persistence of waves has beelydiggilighted [29, 30], so that the
main assumptions of WT are clearly verified experimentally.

Goal. The aim of this paper is to present numerical results allgvire study of the turbulent
behaviour of plates, with or without imperfection, and thist part is more directly concerned
with the transition to turbulence. First, experimentaliesindicate the generic transition sce-
nario observed in thin structures like plates and shellemthey are excited pointwise with a
harmonic forcing of increasing amplitude. This scenaris alaeady been reported elsewhere
for gongs and cymbals [12, 13, 14, 24, 31, 25]; here experiahessults on a rectangular plate
are presented, showing once again the generality of thess\@iions. Next, a numerical model
is presented, allowing for a precise reproduction of theserpental set-up. The model is based
on a finite diference scheme that, in the lossless case, conserves enenggliine accuracy
[32], and allows modelling of pointwise harmonic forcingelminary numerical results have
already been presented for a plate with free edges in [33¢ the case of simply-supported
edges is considered. The transition scenario is then noatlgrassessed, for the case of perfect
and imperfect plates. Finally, the turbulent state is briafldressed by comparing the power
spectrum of the numerically obtained velocity to that pceti in [26].

Summary of experimental result3he case of a thin structure (such as a plate, shell, gong
or cymbal) excited pointwise with a harmonic forcing of aegivirequencyf®*€ and linearly
increasing amplitude, is considered. Numerous obsenatiave already been reported on var-
ious kinds of gongs, cymbals and circular spherical-cafishe[12, 13, 14, 34, 24, 31, 25],
where the pointwise forcing is realized either with a meatershaker or with an electromag-
netic device consisting of a magnet glued to the structun®saoded by a coil with controlled
current, as described in [35, 36, 28]. The observed scef@rihe transition to turbulence in



vibrating structures implies two bifurcations, separgtinree distinct regimes.

The case is here illustrated in Fig. 1, showing measurenaatgn from a thin rectangular
plate of lateral dimensions 38ct89cm and thicknesb=1 mm. The plate is excited at its
centre by a shaker and has free edges. The vibration velsceiigasured by a laser vibrometer,
2 centimeters from the center (to avoid laser saturatioredisnring near the edges, as can occur
in the turbulent regime where the vibration amplitude carobthe order of one centimeter).
Fig. 1 shows two typical measurements obtained for exoitatiequencied **°=151 Hz and
290 Hz respectively. The excitation amplitude is increalsegiarly during the experiment,
then maintained at a constant value once the turbulent eegirattained. Spectrograms of the
measured velocity are shown, with time indicated on theiabac
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Figure 1:Experimental spectrograms of the vibration velocity foeetangular plate excited with a har-
monic force of increasing amplitude and frequency 151 Hzdadl 290 Hz (b). In each case the three
different vibration regimes are clearly identified.

For small excitation amplitude, the regime is moderatelglim@ar. In order to optimize
the injection of energyf®*¢is generally chosen in the vicinity of one of the structutaigar
eigenfrequencies. Hence the first regime is essentiallyrdinear unimodal regime, where
the directly excited mode vibrates in the nonlinear regiomaracterized by the appearance of
harmonics of the forcing in the response. In the two casemdmics of order 2 to 4 are clearly
visible; as imperfections are unavoidable in real platéq,[§uadratic nonlinearity is present,
and these even harmonics are observed in the response.heqieesence of harmonics of 50
Hz in the response, at small and constant levels. They aateceto the current delivered and
are unavoidable in measurements. They are easily recd@iaad must not be interpreted as
physical.

For a given excitation amplitude level, a bifurcation is ebved. In Fig. 1(a), a 1:2 inter-
nal resonance is excited, and energy is transferred frorditeetly excited mode to that with
eigenfrequency nedf*/2. Modal analysis reveals the existence of an eigenmodegudéncy
72 Hz, which is here slightly shifted by the nonlinearity dodk-in phenomena to perfectly
fulfill the 1:2 resonance relationship and receive energyfthe directly excited mode. The
bifurcation is clearly delimited, as is usual in 1:2 intdrr@sonance where a subcritical bi-
furcation is at hand [38, 39, 40]. Consequently the jump dbupled branch excites higher
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frequencies resulting in a short transient. Then the calipl2 regime sets in clearly, and finally
appears to be disturbed in the vicinity of the second bifiiwoa For f€*°= 290 Hz, Fig 1(b),
the first regime becomes unstable in favour of a coupled reginvolving two eigenmodes,
whose eigenfrequencids =95 Hz andf, =195 Hz are such tha + f, = € resulting in a
1+1:2 internal resonance relationship. Once again, linealyars reveals the presence of two
eigenmodes at 90 and 190 Hz respectively, again with fregaeslightly shifted to fulfill the
resonance condition. From these two examples and thosalglpgesented in [13, 14, 25], the
generic scenario experimentally observed involves thusaldifurcation where all the modes
sharing internal resonance relationships of the form :

fi+ f; = f&° 1)

are excited through energy exchange, leading to a so-calladiperiodic state. The simple
case of 1:2 internal resonance is a particular case of (1jenhe f; leading to a quasiperiodic
state degenerated in a periodic regime. The frequency pEgesaring in the quasiperiodic
regime can also not be directly related to the excitatioquesncy. The energy can first be
spread through modes sharing internal resonance with tbetlyi excited modes like (1), then,
once this new subset of frequencies is excited, new modemglaresonance relationship of
the form f, + f, = fi with at least one off,, f, or fi belonging to the first subset of excited
modes, can appear in the vibration. In all the experimeialgzexl, order-two internal resonance
relationships have always been observed, which simplyctetfhe fact that for real plates with
imperfections, quadratic nonlinearities dominate thdsribic type, so that order-three internal
resonance relationships are completely hidden by thoseaunsl order. Fig. 1 shows two
excitation frequencies for which the quasiperiodic regepeears, but it may not be present
if no evident internal resonance relationships exist. Tas been observed preferentially for
low-frequency excitations, as the coupling appears to ik miodes with frequency smaller
than that of the excitation.

Finally, the second bifurcation occurs and the turbulegime sets in. It is characterized
by a broadband Fourier spectrum with energy up to 8000 HA#two cases shown in Fig 1,
indicating a flux of energy from the injection scale to thesghative scale.

The aim of this paper is to develop affieient numerical method in order to study the
transition to turbulence through simulations, allowindjdation of the scenario inferred from
experimental measurements, as well as to give more insighthulent behaviour.

2. Numerical mode

2.1. The von Karman equations for perfect and imperfeatigsl

The model chosen here relies on the von Karman kinematgsimptions for describing
the geometric (large-amplitude) non-linear behaviourhoh fplates. A rectangular plate of
dimensiond., x Ly and thicknes& is considered, and is of elastic material of dengjtyoung’s
moduluskE and Poisson’s ratie. The equations of motion are given for an imperfect plate
without residual stresses, and comprise a set of two equsatar the two unknowns, namely
the transverse displacemam(x, y, t) and the Airy (or stress) functioR(x, y, t) [41, 42, 43, 37]:

phW + DAAW + 6w = L(W, F) + L(Wo, F) + P, (2a)

AAF = —E?h[L(vV,vT/) + 2L(W, Wo)], (2b)
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whereD = Eh®/12(1- v?) is the flexural rigidity,o is an ad hoc viscous damping ¢heient,
andp represents the external forcing applied to the plate. Tlengtric imperfection is repre-
sented by the displacemeng(X, y, t) of the middle surface. In setting, = 0, the von Karman
equations for perfect plates are recovered. The bilinearatprL is defined, in Cartesian coor-
dinates, as:

L(F,W) = F Wy + F Wy — 2F x W,y 3)

The equations (2) are scaled by using the following trams&ions:

X v VB(L=2) _

X = , = , W= ——"W 4a
LyL, Y LyL, h 42)
F o V6(1-v3) _
F=—, o0o=—, p:%p (4b)
D oh oh

After substitution, we obtain:

W+ K2AAW + oW = K°L(W + W, F) + p, (5a)
AAF = —L(w, w + 2wp), (5b)

wherex? = phLLZLZ. The equations of motion (5) will be used in the remaindethefarticle. It
Xy

is worth noting that they are not non-dimensional equatitinge has not been scaled, so that
the factork has the dimension of a frequency. This choice has been eetéom computational
reasons.

In the remainder of the paper, simply supported boundargitions are chosen. For the
scaled transverse displacemensimplified boundary conditions are used [44, 45, 16]:

(92W |—x_

w=0, W_O’ fOI‘X—O, 1’L—y, Vy (6&)
Fw /Ly.

w=0, 8—y2 =0; fory =0, L—X, VX. (6b)

For the scaled Airy stress functidn the following boundary conditions have been cho-
sen [45]:

oF _ /LX_
F =0, ol 0; for x =0, L, vy (7a)
oF Ly
F=0, ——=0; fory=0, [V 7b
By ory L, (7b)

2.2. Finite dfference scheme

In this section a finite dierence scheme is introduced to solve the equations of motion
(5) together with boundary conditions (6)-(7). The schema perfectly energy-conserving
scheme (under lossless conditions), to machine accunagyas been introduced in [32]. Itis
here adapted to the case of forced and damped equations.



2.2.1. Grid functions and operators

The main steps for deriving the energy-conserving scheméare briefly recalled, fol-
lowing the notations and the definitions given in [16, 32].r Rmore thorough details on the
discrete operators, the reader is referred to [16], and 2pff# the proof that the scheme is
energy-conserving for undamped and unforced equations.

The continuous unknown functiomgx, y, t) andF(x, y, t) are replaced by their values on a
discrete domainw)’ andF , for integerl, mandn. The time index isn where continuous
time t has been replaced by its discrete counterpart nh with h; the time step. In the
same manner, the spatial domain is discretized so that theewl, m are defined through:
(I,m) € [0,Ny] x [0, Ny]. The size of the domain idNy + 1)(Ny + 1), and the space steps are
denoted respectively blg, andhy. In practice, the grid spacinds andh, are fixed by the
stability condition of the scheme (see below), and the nurobgrid points is deduced from

Ny = E(h—lx '[—;) andN, = E(h—ly \/t:i), whereE(T) stands for the integer part §f For minimal
numerical dispersionfiects, it is best to choose the grid spacings as close to tlresalb as
possible, for a given time step.

The following discrete notations are now introduced. Thi fanward and backward time
shift operator are defined through their action on a grid fien¢ sayw)’, , as:

Q*'Vvﬂm = an+l et—VVﬂm = V\'ﬂ%l' (8)

I,m >
Classical approximations of the first (centered, forward backward) and second derivatives
in time read as:
1
~ 2h
where "1” stands for the identity operator.
Temporal averaging operator are defined as:

1 1
Ot (& —&), On = H(et’f -1), o = F(l - &), O =0u0r, 9)
i

1 1 1
Her = E(eﬁ +1), = 5(1 +&), M= E(et’f + &), it = Mt (10)
The same definitions clearly follow for the spatial discreseiables, where we will also
need a discrete bi-Laplacian (or biharmonic) operatardefined from:
San = 6A0A (12)
2.2.2. Conservative scheme

The two-parameter family of energy-conserving schemesn@notonically dissipative in
the lossy case) introduced in [32] is here adapted to theafdbe damped and forced problem
defined by (5). For the sake of simplicity, the discrete \‘agaw{| andF are simply denoted
by w andF. The family of schemes depends on two parameters ngaedy, as:

SeW = —K2SaaW — o0 W + K21 (W + Wi, F) + Py (13a)
pr-6anF = —yI(W, &- (W + 2Wp)) — (1 = y)pr- 1 (W, W + 2wp). (13b)

where the following terms, directly depending on the twoapaeterg3 andy, have been intro-
duced:

W=yW+ (1 - y)ueW, (14a)
Wo = yWo + (1 — y)ut Wo, (14b)
F =8F +(1-pB)uF. (14c)



The bilinear operatok has been discretized Hsv, F) and reads:
|(W, F) = 6xxw5ny + 6WwéxxF - ZlIXfﬂ)r(6X4ryFwdx+yF F). (15)

The external forcing is introduced so as to mimic the expenital results described in the
introduction. Consequently, the dimensioned forcing reenlchosen as

P(X ¥: 1) = 6(X - X0)(Y — Yo) Asin(Q), (16)

whereA is the amplitude of the forcing (in N), an@ the excitation frequency. The non-
dimensional forcing simply reads:

with A= Yod="9) & 17)

P(X, Y, t) = 6(X = X0)d(Y — Yo) Asin(Qt), phL, L,

The forcing is pointwise, so that the discretized forcingrtey’  appearing in Eq. (13a) is
bilinearly spread to the four nearest neighbours of the@hexcitation pointX, Yo).

The stability condition, which may be derived through eyeagalysis, is:

B<1/2 (18a)

h>2<h§ [ph
hy < m D (18Db)

under the choice of = 1 andB = 0. It is worth emphasizing that this condition, identicalhat
which holds in the linear case, is here necessary aftitigunt for stability in the fully nonlinear
case as well.

In practice, the sampling rati is chosen a priori, and the number of grid points for the
simulation is chosen so as to satisfy the above conditiofoagly as possible, thus minimizing
numerical dispersionféects.

3. Simulation resultsfor the perfect plate

3.1. Linear convergence

For the simulations, a plate has been chosen with dimensipas0.4m x L, = 0.6m, and
thicknessh=1 mm. Material parameters have been set so as to model a lstegehMath E= 200
GPa,v=0.3 andpo=7860 kg.m?,

For a simply-supported plate, the radian frequencies ave/kranalytically [44]:

a _ .2 D p2 q2
(,()pq =T p_h [L_)2< + L—)Zl] , (19)

wherep andq are two integers indicating the number of half-waves inxtendy directions
respectively. Table 1 shows the first 27 exact eigenfreqasiod the chosen plate, ranging from
21.65 Hz (fundamental mode) to 406.29 Hz.

The linear problem associated with (5) allows estimationhef numerical eigenfrequen-
cies computed with the finitederence scheme. As usual with finite¢fdrences, a fine grid is
necessary in order to have significant accuracy in the coadpséquencies, and the accuracy
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21.65| 41.63 | 66.61 | 74.93 | 86.59 | 119.89| 121.55| 141.54| 161.52
166.52| 181.50| 194.82| 226.46| 241.44| 246.44| 254.76| 266.42| 299.72
299.72| 301.39| 341.35| 346.35| 374.65| 381.32| 386.31| 401.29| 406.29

Table 1: Eigenfrequencies (analytical values, in Hz) ofttlected plate for the simulations, = 0.4m, L, = 0.6m,
h=1 mm,E= 200 GPay=0.3 ando=7860 kg.n°.

decreases with mode number. It is worth noting, howevet abeuracy is rather good over the
entire spectrum, up to the Nyquist frequency—such is notése, for example, for Chebyshev
spectral methods, which compute low modes with very highiaay, but fail spectacularly in
computing high frequency modal frequencies. Because tieeeist here is in obtaining wide
band responses at a reasonable sample rate, simpler fifigeedce schemes are a good alter-
native. Figure 2 and Table 2 illustrate the numerical acyuadtained. In Figure 2, the relative
deviation of the computed eigenfrequencies with respettte@nalytical values are shown by
plotting:

Al = |w'fs—_w'a| (20)

f— a ’

W

Wherea)ifS stands for the numericdlieigenfrequency, computed with the given sampling rate
fs, andw? is the analytical' eigenfrequency recalled in Eq. (19), in the frequency rdfige
5000] Hz. One can see that feg=100 000 Hz, the relative deviation of the eigenfrequendes i
less than 10% up to 5000 Hize. until the 374" mode.

—— SR=12500
- - SR=25000
—— SR=50000
—— SR=100000

0.4r-

relative deviationA ¢
N
T

1 1 1 1
0 1000 2000 3000 4000 5000
f [Hz]

Figure 2:Relative deviatiomif between analytical eigenfrequencies of a simply suppqtate and those
computed with the finite dierence scheme with increasifig, in the frequency range [0, 5000] Hz.

Recalling that our interest is matching the experimentakolations discussed in the intro-
duction, the frequency range of interest for the choice efftiicing frequency will not exceed
400 Hz, as it allows simulation of the transition scenaridahe 3¢" mode, hence giving rise
to numerous bifurcations. In the experiments, the sameéecy range was also tested, mainly
because the amplitude of forces required to attain the lkembuegime for higher excitation
frequencies is generally out of range for conventional sfrakKrable 2 shows, for the computed
eigenfrequencies shown in Figure 2, the number of grid paised, as well as the maximal



fs | Nx | Ny | (Nx=1)(Ny - 1) | [0,500] Hz | [0,2000] Hz | [0,5000] Hz | [0,10000] Hz

Sampling rate (Hz) Number of grid points | up to 34" mode up to 144" mode up to 378" mode up to 758" mode
12500| 18 | 27 442 6.8% 23.5% 41.6% J/
25000| 25| 37 864 3.6% 13.0% 30.4% 41.6%
50000| 36 | 54 1855 1.7% 7.1% 15.1% 28.9%
100000| 51 | 76 3750 0.9% 3.7% 8.3% 15.2%

Table 2: Convergence of numerical eigenfrequencies onteelérequency bands. For each valuégfthe number
of grid points used in the scheme is given, as well as the maxiteviationA; on four frequency intervals.

deviations within some selected frequency ranges. Oneaaciwge that a fair accuracy is ob-
tained for the eigenfrequencies up to 500 Hz fg£25000 Hz, hence allowing the simulation
of the transition to turbulence for the first 30 eigenfrequies. Obtaining better accuracy for
larger frequency bands requires a number of points for sitrmnl which increases rapidly. As

compared to a preceding study on the transition to chadbiations in circular plates where

a Galerkin modal projection was used to discretize the égus{25], one can conclude that
with the present method, a very large number of modes iswedan the simulation. However

their accuracy is limited although the lower modes are finepresented. Convergence will be
further studied in the next section in order to select anatpmral value for the simulations.

3.2. Conservation of energy and nonlinear convergence

For the dimensional problem defined by Eqgs (2) and withoueirfgetion (v, = O gives a
perfect plate), one can define the kinetic enefgyhe bending/ and the in-plane energy as

[38, 16]:
- [ fs izas, (21a)
V- [ [ F@was (21b)
U= f fs Z—éh(AF_)ZdST, (21c)

whereS = [0,L,] x [0, L] is the dimensional area of the plate. When undamped vinati
are consideredofy, = 0) and for conservative boundary conditions (such as thosanply-
supported type), the total energy of the plate (or HamitohH = T + V + U is conserved
during any motion. Note the simplified form for the bendingegy (21b), arising from the fact
that simply-supported boundary conditions are considg@d16].

After the scaling defined in Egs (4), one obtains the follayfiorm for the scaled energies:

- 1

T= T, with T= ~W 22
e ffsz ds, (22a)

V= 6(1_)/2)\/, with V =« SE(AW) ds, (22b)

~_ phPLiLy : 2 1 2

U 6(1_V2)u, with U =« ffsz( )2dsS, (22¢)



with S=[0, +/Ly/Ly]x[0, 4/Ly/L.] the scaled area. The discrete counterparts of the scates fo
of the energied, U andV are defined through:

1

t= §||5t*W||§, (23a)
1

b= EKZ < OAW, §-0 AW >, (23b)
1

u= zkzﬂrH%Fllg, (23c)

where the scalar produet f, g >, between two discrete functioris= f,, andg = g, defined
on the discrete domain= [0, Ny] x [0, N,] is given by:

Nx Ny

< £,9>=hdy > > finGim (24)

I=0 m=0

In Egs (23), the expression faris simplified to the specific scheme selected wi#i and
B=0. These expressions are constructed so as to obtain thercatisn of the total energy
or discrete Hamiltonian of the system. kag = 0 and conservative boundary conditions, the
conservation relationshify-h = 0 with h = t + v + u is demonstrated in [32].

Figure 3 shows a typical simulation with the selected pleteited with a frequency of
87 Hz (in the vicinity of the fifth eigenfrequency), where thmplitude of the forcing is first
increased from 0 to 30 N in 7 seconds, then kept constantgldrseconds, and finally set to
zero in the remaining 7 seconds of the simulation. An undahgbate is considered in this
simulation ¢ = 0) in order to numerically verify the conservation of energyn arbitrary
output point from the plate is selected for analyzing theatilon. It is located ak = 0.2L,,

y = 0.3L,, and will be denoted by in the remainder of the article. The spectrogram of
weUt shows a transition from periodic to turbulent behaviounwdag att=5 s. As no damping
is considered, the turbulent state persists once the extinrting is set to zero. Figure 3(c)
shows the behaviour of the computed energies during thelaiioo: the total energy being
decomposed between its transvetrsep and in-planar components. As long as the forcing is
not cancelled, energy is fed to the plate that can not bepdigsi, hence the total energy of the
system increases continuously. Once the forcing set tq agperfect conservation of energy
(to machine accuracy) is found. A significant increase ofrthglane energy is observed during
the turbulent behaviour. This peculiar feature will be dssed in section 5 where will we show
that it results from the relaxation of the simulated systerart absolute equilibrium state that
has no physical meaning, and is only a consequence of thestiian imposed by the numerics.
The simulation shown in Fig. 3 has been computed vigth50 kHz and lasts 18 hours on a
standard PC with a CPU clock at 2 GHz.

The same simulation is shown in Fig. 4, where a linear visaamping term has been
added to the dynamics. The damping value has been st +00.75, consistent with what is
observed in metallic plates, as well as what was chosen i [B5Fig. 4, the decay time is
around 7 seconds which corresponds to what is usually megsitihis valuego = 0.75, will
be kept in the remainder of the study.

The same excitation frequency has been chosen, so thatch ti@esition is still observed,
as no internal resonance relationships are fulfilled fog &xcitation frequency. As compared
to the undamped case where energy is present in the wholewpeap tofs/2, the damping
limits the frequency span of the turbulent regime by addimtisaipative scale to the system.
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Figure 3: Transverse vibration and energy of an undamped plate dxaft87 Hz. (a): transverse dis-
placement®t at one point on the plate and history of the dimensioned tapdimplitudeA on the right
axis. (b): Spectrogram af°". (c): Total discrete energy (arbitrary unitsjblack) of the plate during the
simulation, decomposed into its bending (transverse) coraptt + v (blue) and its in-plane component

u (magenta).
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Figure 4: Transverse vibration and energy of the damped plate-Q.75) excited at 87 Hz. (a): output
transverse displacemenf't and history of the loading amplitud&. (b): Spectrogram of°'. (c):
Total discrete energy (black) of the plate during the simulation: transverse congmtt + v (blue) and
in-plane component (magenta).
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Here, energy is present up to 10 kHz. The energetic behastoaws that in-plane energy
remains limited to very small values so that transverseggrer v is almost superposed to

fskH2)| 551 5| 10| 15| 25| 35| s0| 75
22Hz| 58| 101| 7.1|14.4| 158|158 158
75Hz|3.4| 6.1] 7.1|11.8|101]10.1|101|
227Hz| 49| 8.6|13.1| 18.1] 18.9| 18.9] 20.1| 20.1

fo (Hz)

Table 3: Critical valuei, (in N) of the amplitude of the external forcing for which thetiulent behaviour sets
in, as a function of the sampling frequenty in kHz (first row), and for three dlierent excitation frequencies
feXC= Q/2x: 22 Hz, 75 Hz and 227 Hz.

In order to gain some insight into (and confidence in) the eagence of the numerical re-
sults with respect to the chosen sampling rif@nd consequently the number of grid points
used to simulate the plate dynamics, a convergence studyrespect to the critical force
needed to attain the turbulent behaviour is conducted,arsttime manner as in [25]. More
specifically, in order to obtain the long-term behaviourlw plate for a given forcing ampli-
tude, instead of continuously increasiAgthe variation interval [0Anay IS separated into 50
steps, and A is incremented by small steps (around 0.5 N) andstant value is maintained on
each subinterval. The length of each subinterval is 35@gdsrso that the transient behaviour
can be fully damped, and after that 60 periods of the vibnatesponse are recorded for ana-
lyzing the behaviour (periodic, quasi-periodic or turlmi)e This kind of numerical simulation
strictly follows themodus operandpresented in [25] for circular plates. This results in ex-
tremely long simulations that lasts around 3 weeks for eddhethree forcing frequencies
tested. Table 3 shows the obtained results for increasihgsaf fs, where the critical force
A (in N), where the turbulent behaviour sets in, is reportext.fE=35 kHz, the critical forcing
amplitude obtained is converged. This observation recxesults already shown [25] explain-
ing that this critical forcing value appears to be contmlley the low-frequency part of the
dynamics (slow-flow equations), so that a very refined grigbisnecessary for obtaining con-
vergence in the first regime. This will not be the case anyrfmréne turbulent regime where
higher values of's are needed due to the presence of the energy flux throughhtarades. this
will be discussed in section 5. For studying the transiticengirio, the sampling frequency has
been selected afg = 50 kHz.

In order to get a complete picture of the transition scen&@8simulations have been re-
alized for frequencies in the range [20, 350] Hz. Within thiequency range, 21 modes are
present. 21 simulations have thus been realized aroundgbefeequencies, from 22 Hz for
the first to 342 Hz for the 21, and 12 additional frequencies have been tested to obdeeve t
scenario away from linear resonances. The results aresdivitckwo frequency bands, "low fre-
qguency” from the fundamental to the ninth mode at 162 Hz, dmghi’' frequency” from 167 Hz
to 342 Hz. This distinction is made with regard to the obtdiresults. As will be shown subse-
guently, in the low frequency range, the generic transisicenario observed is that of a direct
transition to turbulence, whereas in the "high frequeneyige, the most common encountered
case was that of a three-stage scenario with the appearatieequasiperiodic regime before
the turbulent state.
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3.3. Low frequency excitation

3.3.1. Generic case

In the low frequency range, 17 frequencies have been te$teg), are given as follows, in
parenthesis is indicated the critical vakig (in N) for which the turbulent behaviour sets in: 22
Hz (22 N), 42 Hz (56 N), 65 Hz (51 N), 67 Hz (38 N), 70 Hz (18 N), 7% @16 N), 80 Hz (15
N), 87 Hz (21 N), 118 Hz (56 N), 120 Hz (54 N), 122 Hz (55 N), 12532 N), 127 Hz (25 N),
130 Hz (18 N), 131 Hz (20 N), 142 Hz (15 N) and 154 Hz (45 N). Noiat the critical force
amplitudeA., is given in an indicative manner, and the values can be $jighfferent from
those reported in Table 3.2 as in these experiments thetpasnplitude was linearly increased
in 20 seconds without waiting for the transient to die awagaath force step. A more thorough
study of the critical force is reported in [25] for circuldafes.

2000

R
w
(]
(]

1000

Frequency [Hz]

R T

0 5 10 t [s] 15

Figure 5:Spectrogram of output displacemevi't for the plate excited at 154 Hz, with a linearly increas-
ing force from 0 to 60 N over 20 seconds. A direct transitiotutbbulence is observed, occurring ailb
s,i.e. for F=45 N.

Figure 5, where the plate is excited at 154 Hz, shows the gecase observed in the low
frequency range: a direct transition to turbulence, asss #ie case presented in Fig. 4 with
f€*=87 Hz. In both cases, a first regime is obtained where thettirexcited mode vibrates
nonlinearly, hence creating odd harmonics of the excitattiequency that are clearly present.
As expected from perfect non-linear plate dynamics coirgianly a cubic nonlinearity due to
the internal force symmetry with respect to the middle stgfano even harmonics are present
in the response. In Fig. 4 with®*°=87 Hz,i.e. in the vicinity of the fifth mode, the turbu-
lent behaviour suddenly settles down fo£21 N, whereas this critical amplitude needs to be
attained at 45 N forf®*°=154 Hz, mainly because 154 Hz is not in the vicinity of an eigen
frequency so that a higher amplitude is needed to attair langplitudes of vibrations (linear
resonance). The direct transition has been observed ftnealrequencies tested in the low-
frequency range, namely for : 22 Hz, 42 Hz, 70 Hz, 80 Hz, 87 H8 Hz, 120 Hz, 122 Hz,
125 Hz, 131 Hz and 154 Hz. This generic behaviour is integorets a reflection of the fact
that no internal resonance relationships exist betweewuahelow-order eigenfrequencies that
are excited here. Hence the energy is stored in an eigenmotilemwhich cannot exchange its
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energy with other internally resonant modes, until theitglimit is attained and the turbulent
regime sets in. As the direct transition do not need specifiestigations, we turn now to the
analysis of the particular cases obtained for some fregegicthe low-frequency range.

3.3.2. Particular cases

The six remaining frequencies show dfdient transition scenario, three of them being
illustrated in Figs 6, 7 and 8.
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Figure 6: (a): Spectrogram of output displacemevit't for the plate excited at 75 Hz, with a forcing
amplitudeF from 0 to 28 N in 14 seconds. A superharmonic resonance iseelaiith participation of
the first mode locked at 25 Hz frora% s, then the turbulent regime is obtained=a4 &,i.e. for F=16 N.
(b): Fourier transform of a 1.3 sec (Hanning window &$-265536 points) computed &6 s showing
the spectral content of the vibration in the coupled supenbaic regime.

The first particular case studied is represented in Figuob$erved forf ¢*°=75 Hz,i.e. in
the vicinity of the fourth mode of the plate. The amplitudelod forcing is increased linearly
from O to 28 N in 14 seconds. The first regime is the moderatehylmear regime where only
the directly excited mode patrticipates in the plate respoA$t=5 s, a bifurcation is observed
with the clear appearance of a frequency of 25 Hz in the vidmmagas highlighted in Fig. 6(b).
This frequency peak is the signature of the first eigenmodtcpeation through a superhar-
monic 1:3 resonance. It occurs for a non-negligible forangplitude (10 N), mainly because
the 1:3 resonance relationship is not perfectly satisfieelndd the 1:3 resonance relationship
can be satisfied only for an energy that isfigient so as to obtain a frequency shift of the first
mode. The fact that internal resonance can occur betweersribdt are not commensurate
natural frequencies has already been observed in [46, 44948When increasing amplitudes
of vibrations and thus the total energy level, periodic 8ohs follow nonlinear normal mode
(NNM) branches, showing large variations of frequencidsuslinternal resonances can be ful-
filled between the shifted frequencies, so that the exaimimaft natural frequencies to predict
possible mode coupling is not enough. A correct representé to compute the variations
of all eigenfrequencies as a function of the total energyhefdystem, resulting in a so-called
Frequency-Energy Plot (FEP) [50]. The numerical resulamigtd here foif =75 Hz seems to
verify this kind of behaviour and resembles the results shimy48] on a simple two degrees-
of-freedom (dofs) system. This assumption could be fullyfconed by computing the complete
FEP of the plate for the first frequencies, which is out of tbepe of the present study. Once
activation of the 1:3 superharmonic resonance is realithedspectrum, shown in Fig. 6(b), is
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logically composed of peaks being separated by 75&%Hz. However, one can observe that
the third peak at 125 Hz is proeminent as compared to thewioilys, as it has almost equal

energy than the spectral component at 25 Hz. As the severdh ofdhe plate is given at 121.5

Hz, a possible assumption here is that this mode is alsoeekgiti energy transfer so that a
3-modes dynamics is present after the first bifurcation. ddwgled regime persists during 4

seconds and is enriched in spectral content with an incie&abe width of the spectral peaks,

until the turbulent regime sets in for a forcing amplitudd-ef16 N.
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Figure 7:(a): Spectrogram of output vibratiew't for the plate excited at 67 Hz, with a forcing amplitude
F from 0 to 50 N in 20 seconds. A symmetry-breaking (SB) biftiorais observed with the appearance
of even harmonics in the response, before the turbulentezgi(b): Fourier transform of a 1.3 sec
segment (Hanning window of'2=65536 points) computed &t14.5 s showing the spectral content of
the vibration after the SB bifurcation.

Surprisingly enough, the 1:3 superharmonic resonancedidsern observed in the vicinity
of the third mode, the eigenfrequency of which more closelfjlfs the 1.3 ratio needed. This
is confirmed in Fig. 7 where the scenario fB*°=67 Hz is shown. For this frequency, the
1:3 resonance is not excited, and a symmetry-breaking (8&chtion is observed, which is
characterized by the appearance of even harmonics in thenss before the turbulent regime
and a wideband Fourier spectrum. The SB bifurcation is alg observed in the Diting
equation, its location in the plane being, in frequencyween the 1:3 superharmonic and the
main resonance; sexg.[51, 52]. It has also been observed in the FEP of the two daftesy
analyzed in [48, 49], where it was found to appear before tBaenternal resonance, what also
seems to be observed here in the case of the plate. Onceagamplete picture of the internal
resonance mustinclude the energy level, so that a FEP shilyldonfirm the assumptions for
the mode coupling observed here f6r=75 Hz andf ®*°=67 Hz.

Finally, two other numerical experiments have been coretliat this frequency range,
fe=65 Hz and 70 Hz. Forf®*“=65 Hz, neither the SB bifurcation is found, nor the super-
harmonic resonance. Instead, a short quasiperiodic regitsein with a clear appearance of
frequency peaks at 25 Hz, 105 Hz and 155 Hz between the emoita¢quency and the third
harmonic at 195 Hz. These five frequencies fulfill third-ordgationships so that an energy
transfer is at hand. However, apart from the first frequen@baHz that can be easily related
to the first mode, it appears to be mordidult to relate the two new frequencies at 105 and
155 Hz to an eigenfrequency. Noting that the first regime satslized at a high value of
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the forcing (around 50 N) fof¢**=65 Hz, one can conclude that the frequencies have already
encountered a large variation due to nonlinearity. In teetkst withf €*=70 Hz, a direct transi-
tion is obtained, highlighting that the internal resonargtationships exist on narrow frequency
intervals.
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Figure 8:(a): Spectrogram of the output vibratiev?"! for the plate excited at 130 Hz, with a forcing
amplitudeF from 0 to 30 N in 10 seconds. A direct transition is observethviequency peaks of
increasing width just before the turbulent regime. (b) ar)d Fourier transforms of a 1.3 sec segment
computed respectively &5 s andt=8 s.

The last case shown for the low frequency range is represémféig. 8, for f¢*=130 Hz.
A similar behaviour has also been found f6i°=127 Hz and 142 Hz. Here the peculiar feature
is a marked broadening of the spectral peaks around all hmacsqust before the turbulent
regime, as illustrated in the two spectra of the output dispinent®"t shown in Fig. 8(b-c).
The interpretation of this bifurcation is not straightf@ma in this case, as it appears slightly
different from a direct transition, but it could also be seen asasigeriodic state involving
so many modes that peak identification iffidult. We note also that this spectral enlargement
is one of the characteristics of modulation instability,[5&, 55], which could be the correct
interpretation in these cases. It is worth noting that thesds of transitions have also been
observed experimentally. Further research specificalhycentrated on this case is however
needed to ensure the category in which it falls. In the regeiof the article, this type of
scenario will be called, for lack of a better term, modulatiistability; at this stage it is simply
a blanket term for a phenomenon that needs a more complatactd@zation.

3.4. High frequency excitation

In this section we discuss the results obtained in the frecpeange [167, 342] Hz, here
called the "high frequency range” because the observeascatiffers radically from the cases
discussed in the previous section. 15 numerical expergrteave been conducted, and only two
direct transitions without quasiperiodic regime have biemd, whereas ten cases of energy
transfer within the quasiperiodic regime have been obskiued three cases corresponding to
the more dificult case shown previously with®*°=130 Hz and called modulation instability.
The tested frequencies are (in parenthesis the case obdsddfor direct transition, QP for
guasiperiodic regime, MI for Modulation instability, as Was the critical force amplitudé,,

(in N) for which the turbulent behaviour sets in): 167 Hz (®N), 171 Hz (MI, 30 N), 182 Hz
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(QP, 31 N), 184 Hz (QP, 37 N), 190 Hz (QP, 21 N), 195 Hz (QP, 24188 Hz (QP, 66 N), 202
Hz (D, 19 N), 227 Hz (MI, 82 N), 230 Hz (QP, 100 N), 247 Hz (Ml, 18,1800 Hz (QP, 42 N),
302 Hz (QP, 40 N), 304 Hz (QP, 20 N), 342 Hz (D, 50 N). Hence thmidant observed scenario
is that of the appearance of the quasiperiodic regime, whitimow be further highlighted. It

is explained by the fact that exciting the plate at a highegdiency with numerous eigenmodes
before the excitation frequency renders possible a largerber of resonance relationships,
hence making this scenario more likely to appear. Threescaseshown and discussed.
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Figure 9:Transition scenario to turbulence for the perfect platétedat 167 Hz, with a forcing amplitude
from 0 to 65 N in 30 seconds. (a) : time series of the outputl@ésment®", (b) : spectrogram of the
vibration. (c) and (d) : Fourier transforms of 1.3 s of theptlisement, respectively at1.5 s (c), and
t=23 s (d).

The first case is that of the excitation frequerfé*=167 Hz, in the vicinity of the tenth
mode, depicted in Fig. 9, where the amplitude of the forang increased from 0 to 65 N in
30 seconds. A first bifurcation is observed-at.5 s, leading to a transient regime that fail to
stabilize and lasts 5 seconds. This unstable transienheegs characterized by an increased
width of the spectral peaks of the forcing harmonics, as shiawhe first spectrum in Fig. 9(c).
Then the stable quasiperiodic regime sets in, with a clgaea@nce of distinct frequency peaks
shown in Fig. 9(d). For a better identification, the most prant frequency peaks are denoted
as: fy = 28 Hz, f, = 69 Hz, f; = € =167 Hz, f, = 265 Hz, f; = 306 Hz, f; = 362 Hz, f;
= 403 Hz, fg = 3f**¢= 501 Hz andfy = 599 Hz. All of these new frequencies share evident
order-three internal resonances amongst themselvedighghg the fact that energy has been
transferred in order to arrive at the quasiperiodic regifer most of them, they can also be
easily identified to eigenfrequencies of the plate. Fromatfter of appearance and respective
magnitude of these peaks, the following scenarios can beiigel. The first frequencies to
appear,f,, f;, f; and fy are related to the excitation frequenty = f€*¢ by the following
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relationships:

f3=f,—fo—fs, (25a)
f3 = fg - f4 - f3. (25b)

Moreover, f,, f4, f; and fg are near eigenfrequencies, respectively to modes numhiér, 26
and 41. Hence a first double order-three internal resonareecited leading to a quasiperiodic
regime with 5 modes exchanging energy. This 5-modes dyrmaimiapidly destabilized for
a more complicated regime including more modes, correspgrtd all the frequency peaks
identified in Fig. 9. These new frequencies appear with k& ltelay as compared to the first
four identified, but they also share evident order-threati@hships:

f3=f4+ f, - fs, (26a)
f3 = f6 + f5 — fg, (26b)
f3=1f+ fg—fe. (26¢)

Eventually, the quasiperiodic regime involves 9 modesterdhrough energy transfers. The
last bifurcation involves destabilization of this complied 9-modes dynamics in favour of the
turbulent regime.
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Figure 10: Transition scenario to turbulence for the perfect platdatedcat 195 Hz, with a forcing am-
plitude from 0 to 35 N in 30 seconds. (a) : time series of thepwiutlisplacemen®", zoom on the
transition between 19 and 26 s. (b) : spectrogram of the tiisra (c) and (d) : Fourier transforms of
0.65 s of the displacement, respectively-£2@ s (c), and+21.1 s (d).

The second case selected for analysis is shown in Fig. 1G;@nesponds to an excitation

frequency off°= 195 Hz, in the vicinity of the 19 eigenfrequency. The forcing amplitude
is increased from 0 to 35 N in 30 seconds in this numerical exy@nt. The spectrogram, in

19



Fig. 10(b), shows a clear scenario with a quasiperiodi@giafore the turbulent regime. The
guasiperiodic state sets in progressively with the appearaf the following frequency peaks,
identified in Fig. 10(b-c) f; = 20Hz,f, =87.5Hz,f; = f*°= 195 Hz,f, = 302.5 Hz,f; = 370
Hz, f¢ = 410 Hz,f; = 477.5 Hz,fg = 3f®*¢= 585 Hz. The first step involves energy transfers
betweenf; (in the vicinity of mode 5),f;, (mode 20),f; (mode 32). The energy, injected on
f3 = ¢ = 195 Hz spread to these new frequency peaks appearing firseiapectrogram
through the following order-three internal resonanceti@hships:

2f3 = f2 + f4 = f7 - f2. (27)

Then, as shown in the displacement spectrum in Fig. 10(@waset of frequencies is excited
through new internal resonance relationships. They apla¢ar in the spectrogram with a
smaller amplitude, indicating that the first identified nemoce dominates. These new peaks,
f1, fs and fs are not directly related to the excitation frequerfgy= f€*¢or its third harmonics,
so that their appearance is conditioned by the fact that tbestiep has been excited and that
energy is present ifp, f4 andor f;. This second instability is characterized by energy trenssf
through the following identified relationships:

f3 = f1 + 215, (28a)
fa=f1+ f + fg, (28b)
fs = fo+ fo — 1y, (28c)
fo = fa+ fo + Ty, (28d)
f=f+ fi+fs. (28e)

After this second instability, the quasiperiodic regimeoives 8 modes. It is quickly destabi-
lized in favour of the turbulent regime which sets in rapidigterestingly, once the turbulent
regime is attained, energy is redistributed through all¢ingthscales, so that the most promi-
nent peaks, identified in Fig. 10(d), are distinct from the®ordentified in the quasiperiodic
regime, where the frequencies were locked to fulfill intéreaonance relationships.

The last case analyzed is shown in Fig. 11, f&f= 230 Hz, with a forcing amplitude
increasing from 0 to 110 N in 20 seconds. Once again a cleasigpréodic regime sets in
before the turbulent behaviour, hence recovering the gétransition scenario inferred from
the experimental measurements. The quasiperiodic stateds more complicated in this case
with the appearance of 5 frequencies under the excitateuincy. All the frequency peaks
share order-three internal resonance relationships, lzav@ is a gap of 40 Hz between the
majority of them.

Finally, all other excitation frequencies tested in thigthfrequency” range show a similar
behaviour to that observed in the three cases illustrateths€juently the generic transition
scenario is fully confirmed by these numerical experimeiis.now turn to an imperfect plate
to simulate a more realistic case, because in experimemtsrfections are unavoidable and
order-two internal resonances in the quasiperiodic regira@lways observed.

4. Simulation resultsfor the imperfect plate

4.1. Selected case
The case of an imperfect plate is now studied by imposingte staflectionwy(x, y) to the
mid-plane of the plate having the form of a raised cosine:

(X = X0)% + (Y — YO)Z)

Limp

; (29)

1+ cos(

1
Wo(X,Y) = EAimp
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Figure 11:(a): Spectrogram of the vibration®" for the perfect plate excited at 230 Hz, with a forcing
amplitudeF from 0 to 110 N in 20 seconds. (b): Fourier transform of 1.3 glethe displacement at

t=15s.
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Figure 12: (a): cross-section (in thg andy directions) of the imperfection of amplitud&nm,, (in M)
considered for the plate. (b): three-dimensional view efithperfect plate. (c) : eigenfrequencies (in

Hz) for increasing values &fimp.

whereAin, is the height (in m) of the imposed static deflection, apg its width. The imper-
fection is centered atx{, yo), as is shown in Fig. 12(a,b) fog = Ly/2 andy, = Ly/2 which

will be the case considered in the remainder of the study.thlother parameters (material
parameterp, E andv, sizel,, L, and thicknes$) are unchanged with respect to the preceding
case so as to illustrate a continuous deviation from theepectse studied in preceding section.

The widthLjn, has been setto 0.2 m.
A modal analysis can be conducted by considering the linadrgb Eqgs.(2):

ohW + DAAW = L(Wo, F), (30a)
AAF = —EhL(W, Wp), (30b)

The associated eigenproblem is solved by using the finfferdnce operators introduced in
section 2. For increasing values of the imperfection am@é#\,, from 0 to 5 mm, the evolu-
tion of the eigenfrequencies is shown in Fig. 12(c). In threaiming cases, the val#g,,=1mm
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(equal to the thickness) is chosen for the simulations.€Tdlgives the first 18 eigenfrequencies
for this case, computed withy=50 kHz (N,=36, Ny,=54), i.e. the sampling frequency used for
the dynamical simulations.

24.81 | 42.34 | 68.33 | 81.63 | 87.24 | 122.35| 124.78| 145.78| 162.56
166.49| 184.10| 198.76| 226.42| 241.67| 247.69| 255.65| 265.61| 298.38

Table 4: Eigenfrequencies for the imperfect plate chosethsimulations, computed witk,=36, Ny=54 spatial
points (fs=50 kHz). Dimensions areL, = 0.4m, Ly = 0.6m, h=1 mm, Amp=1mm, Linp = 0.2 m, material
parameters aré€E= 200 GPay=0.3 andp=7860 kg.n>.

4.2. Transition scenario

As compared to the perfect plate, the distinction betweandond high frequencies does
not appear in the simulations conducted. This appearsaitais a reflection of the fact that
adding quadratic nonlinearity enables more simple onderihternal resonance relationships
so that the scenario with the quasiperiodic state appeaithdovery first frequencies. A set
of 24 simulations has been conducted f6f° ranging from 25 Hz (second mode) to 202 Hz,
in the vicinity of the 13" mode (eigenfrequency at 199.25 Hig. in a somewhat narrower
frequency band than for the perfect plate. The list of thgudencies tested (and in parenthesis
the observed scenario: D for direct transition, QP for apgeze of the quasiperiodic state
(the resonance relationship is indicated when it was eviddrerwise nothing is mentioned
indicating that a single resonance could not be identifigd¥or the last case where the direct
transition is not clearly marked, as in the perfect case,edkas the critical force amplitudé,,

(in N) for which the turbulent behaviour sets in) is: 26 Hz @D, N), 42 Hz (D, 45 N), 70 Hz
(D, 10 N), 81 Hz (D, 15 N), 84 Hz (QP, 8 N), 85.5 Hz (QP, 1:2 ca€eN}, 87 Hz (QP, 1:2, 11
N), 92 Hz (D, 20 N), 109 Hz (QP, 62 N), 111 Hz (D, 60 N), 120 Hz (B,¥), 123 Hz (MI, 54
N), 130 Hz (QP, 12 N), 137 Hz (MI, 24 N), 140 Hz (D, 25 N), 142 Hz, @1 N), 147 Hz (MI,
10 N), 150 Hz (QP, 22 N), 160 Hz (QP4+1:2, 46 N), 162 Hz (QP, 44 N), 164 Hz (QP, 42 N),
167 Hz (QP, 45 N), 180 Hz (QP, 1:2, 35 N), 202 Hz (MlI, 14 N). Hencéhe 24 simulations
run, only 9 direct transitions are observed, which is malskadcontrast with the perfect plate.
It is thus concluded that the presence of quadratic noniitygavours the mode coupling and
the appearance of energy exchange leading to a quasipesi@ade, which can be more easily
degenerated in this case due to occurrences of 1:2 resonance

Fig. 13 shows the simulation results obtained f&1=85.5 Hz. The 1:2 internal resonance
is activated for very small values of the forcing amplitudéhe coupling is with the second
mode, the eigenfrequency of which is 42 Hz. One may also hetappearance of all even har-
monics of the forcing frequency, in accordance with the gmes of the quadratic nonlinearity.
The coupled regime where the two modes are present in thatiibrpersists until the forcing
amplitude attains the value @& 12 N, a smaller value for obtaining the turbulent regime as
compared to those observed for the perfect plate. This isdardance with numerical results
presented in [25].

A more complicated case is now analyzed f6i¢°=109 Hz, presented in Fig. 14. The
spectrogram and the Fourier spectrum of the displacememtrsin Fig. 14(b) indicate that
a first energy transfer follows from+1:2 internal resonance. The modes number 1 and 4,
whose eigenfrequency are respectively 24.8 and 81.6 Hexareed and slightly shifted so as
to perfectly fulfill the relationshid, + f; = £ with f;=26.3 Hz, andf;,=82.7 Hz. The other
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Figure 13:Spectrogram of output for the imperfect plate excited ab &5, with a forcing amplitudé
from O to 60 N in 20 seconds (with only the first 8 seconds shownglear 1:2 internal resonance is
excited forF=4 N before the turbulent regime sets in f6£12 N.
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Figure 14:(a) Spectrogram of output for the imperfect plate excitetio® Hz, with a forcing amplitude
F from 0 to 50 N in 20 seconds. (b) Fourier transform of 1.3 sethefdisplacement®' at t=14 s,
showing the combination resonances before the turbuldravieur.

frequencies noted in the Fourier spectrum are denotef}a52.3 Hz,f;=56.4 Hz,fs=f¢**=109
Hz, f¢=135.4 Hz, f;=161.6 Hz, f3=165.6 Hz, fy=191.9 Hz, f;;=2f¢*=218 Hz. Inspecting
the internal resonance relationships existing over thi®s&equencies, one can see that the
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following order-two resonance relationships are fulfilled

f]_ + f3 = f4, (313)
f]_ + fg = fg, (31b)
f3 + f; = flO- (31C)

These three relations allows and explanation for energngtea and the appearance of frequency
peaksfs, fg, fgandf;. Finally f, andfg are not involved in any order-two relationships. Thus we
assume here that the presence of these frequency peakstesatder-three internal resonance
relationships, as one can verify that:

fy= f,+ f4 — fo, (32a)
fe = f7 + fg - flO- (32b)

To conclude with this section, the distinction between loagtiency and high frequency
range for the imperfect plate has no meaning anymore siecgetheric transition scenario with
the quasiperiodic state is the most frequently observed.pHnticular case of the perfect plate,
unreachable in real experiments, enforces to make thigdisin due to the lack of possible
internal resonance that must mandatory be of order-thretraus more dficult to activate.
As soon as a small imperfection is considered (here equdletdhickness), quadratic non-
linearity is at hand, and energy transfer through quadcatuplings are more easily obtained.
These numerical results confirms in particular that the megéplate is more likely to undergo
instabilities for low levels of vibratory energy, as alrgahown in [25].

5. Turbulent behaviour

5.1. Wave Turbulence

In this section, we analyze the regime occurring after ttvose bifurcation and charac-
terized by a broadband Fourier spectrum. Recently, thealetnd experimental studies have
revealed that the correct framework for analysis is that wieakly turbulent behaviour, cor-
roborating preliminary experimental studies revealirgydivergence of dimension calculations
when using classical indicators of low-dimensional ch&3s 3]. Duringet alapply the Wave
Turbulence Theory (WTT) to von Karman equations of maigoverning the non linear dy-
namics of thin plates, showing the existence of a directaxdesof energy through lengthscales
and deriving their statistical properties in terms of egergpartition [26]. In particular, they
show that the power spectrumy,(k) for the displacement, for a perfect plate, must verify the
following dependence:
pL/3 In*3(k, /K)

[12(1-v3)]¥8 JE/pkt’
whereC is a constant? is the injected power, arkd= |k|| the modulus of the two-dimensional

wavenumber. Omitting the log-dependence that is neglectsdore thek-* one, and translat-
ing the theoretical prediction in the frequency domain ardtie velocityw, one obtains:

Pu(k) =C

(33)

CP¥h

D= ma AP

(34)

where the termf® has been written explicitly to underline the flat dependeséunction of
the frequencyf. Experimental measurements reported in [27, 29, 28, 5636]/shows a
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discrepancy between theory and experiments that is atdlio the presence of damping, not
taken into account in the theoretical derivations.

Here we want to compare the results of our simulations wighgiredictions provided by
WTT. Consequently, an undamped plate is selected so asity trex energy repartition of the
power spectrum given by (34). Note that in [26], a numericaksne based on a pseudospectral
method has already been used to validate the theoretiaditpos.

Figure 15 shows a snapshot of the transverse displacemant velocityw for the plate
excited with an amplitude oA=30 N and an excitation frequency &%= 87 Hz, correspond-
ing to Fig. 3. The spectrum of the displacement béirgppendent ak*, the snapshot of the
displacement is quite smooth, while for the velocity higfreguencies are much more appre-
ciable. This figure from numerical simulation can be comgamedeformation and velocity
measured experimentally and shown in [30].

Figure 15:(a) Transverse displacement of the plafe, y) in the turbulent regime. (b) Transverse velocity
W(X,y). The undamped plate is excited &= 87 Hz with a forcing amplitudé&=30 N.

5.2. Power spectra

Numerical simulations of turbulent behaviour in consemneaiedia are diicult because of
the simultaneous presence of a cascade of energy (a pffiorte) from large to small length-
scales and the absence of dissipation in the system. As #rgyeflux enforces the creation
of smaller and smaller lengthscales, a numerical probleenéguntered when the Nyquist fre-
guency, being half the sampling frequerfgyis attained. From that, energy comes back into the
simulation box as it should normally go to smaller lengthssahat are not simulated. Hence
conducting numerical simulations in the undamped casanexja priori, a very high value of
fs in order to have a frequency band of interest where the castbaklops without numerical
interference.

This is illustrated in Fig. 16, where the complete spectiow of two simulations with the
same set are shown, and for twdéfdrent sampling frequendy. The undamped plate-§ = 0)
is excited withf®*¢ = 75 Hz, the amplitude of the forcing being increased from 0Qd&8n two
seconds, then kept constant during 8 seconds and finallyffcuhtl the end of the simulation.
In Figs 16(a-c), the sampling frequencyfis= 100 kHz, while in Figs 16(b-d) it has been set
to 400 kHz. The spectrograms are shown from 0 to the Nyquesfuiency. The scheme itself
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Figure 16:Spectrograms and Energies for the undamped plate excit€dat 75 Hz. (a)-(c): fs = 100
kHz, (b)-(d): fs = 400 kHz. Bending energy in blue, in-plane energy in magdatal energy in black.

exhibits a numerical cutff at:

2, h2
2« (h5 + hy)) (35)

fs .
fc = —ArCSln(f—S Th;

T

In the limit of high sample rate, and if the grid spacings dmesen exactly according to the
stability condition, this cutfd is precisely the Nyquist frequendy/2; in practice, however,
there will be a slight loss of bandwidth due to a choice of gpacings away from this bound
(so, e.g., one may have the domain divided evenly into ag@nteumber of grid points along
each dimension).

For fs = 100 kHz, one can observe that the upper frequency genergtéoebcascade
quickly attains the Nyquist frequency. Due to the numerlicaltation, the energy seems to
be blocked in the very high frequency range, and starts toragtate. Hence from that point,
the computed solutions are not physical anymore, and whalbssrved is due to numerical
limitations. This is also clearly seen on the energies. fgef 100 kHz, on can see in Fig. 16(c)
that up to 5 seconds, the total energy increases lineadyintplane energy being maintained
at a neglectable value. Then this in-plane energy startad@ase slowly and dramatically,
with an evident broke-up in the slope of the total and bendingrgies. From that moment
the numerical solutions are non physical anymore. Whatsended is a sort of thermalization
where the system relaxes to an absolute equilibrium statgletely driven by the numerical
limitation. Similar numerical observations are shown foitdf flows in turbulent regime [58].

For fs = 400 kHz, the time for the energy flux to generate an upper gequ attaining the
Nyquist frequency is enough so that the numerical resutisbeataken as reliable, unti 9
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seconds, where the slope of the energy is suddenly brokem #at point, one can see that the
in-plane energy starts to increase slowly, whereas theibgmuohe starts to slowly decrease. If
the simulation have been ran on a longer time, the final staiehed by the system would have
been the same as that observed fioe= 100 kHz. A simulation realized witlis = 200 kHz
confirms the scenario by showing an intermediate stage. éfemobtaining reliable results in
the undamped case, a very high valugghas to be selected, which renders the computation
extremely long. Foifs = 400 kHz and the plate selected, the number of grid pointsNyas

102 andN, = 154, and the simulation time was 4 weeks on a standard PC.
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Figure 17:Power spectra of the velocity, for the simulation with= 400 kHz, and at successive instants,
respectivelyt= 2s, 4s, 6s, 8s and 10 s. Power spectra are compute with wirafd/6884 points (0.041
s), mean-valued over twelve successive windows so thae@dnsls of signal is used at each instant.

The simulation withfs = 400 kHz has been used so as to verify the prediction of WTT en th
power spectra of the transverse velocity, Eq. (34). As caselea in Figure 17, a clear cascade
regime sets in with a power law df being verified over more than two decades, showing the
robustness of the numerical method used. It has also beiiedenat the problem encountered
and discussed for the undamped case disappears as sooreasisigiamping to the simulation.
In this case, the cascade does not extend to infinity and ereedgssipated until the energy flux
attains the Nyquist frequency, provided the sampling fesmy is chosen high enough.

6. Conclusion

The transition from periodic to wave turbulence regime mftbrced vibrations of thin plates
has been presented. Experimental results, described inttbeluction, reveal that a generic
transition scenario can be inferred. A detailed numerizalyson a simply supported plate has
been here proposed, hence completing the results presemiesk-edge circular plates in [25],
and assessing the transition scenario involving at mosbifuocations. The first one implies
a loss of stability of the directly excited mode in favour of@upled regime where the energy
is shared between a rather small subset of internally resonades. The resulting motion is
generally quasiperiodic but can degenerate to periodiase of very simple internal resonance,
e.g.1:2 or 1:3. The second bifurcation is characterized by tke & stabililty of this coupled
regime and the appearance of wave turbulence. This scanagi@lso degenerate and simplify
to a direct transition from periodic to turbulent motion®d simple energy exchange through
internal resonances can be activated.
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For perfect plates, direct transitions are generally olesefor the first eigenmodes, whereas
the complete three-stages scenario is the most frequdndgreed from the 20mode approx-
imately. This is a reflection of the fact that perfect plateas exchange energy only through
third-order internal resonance relationships that areenttifficult to activate. On the other
hand, for imperfect plates displaying quadratic nonliftgathe complete scenario has been
numerically found from the very first modes, in the line of exmental observations. The
numerical results have also revealed that internal res@neglationships may not be directly
deduced from the natural frequencies, because of the fnegehifts due to geometric nonlin-
earity for increasing energies. The observed internaln@sces sometimes involved frequency
peaks being far from the linear values, so that a predictfdheinvolved couplings after the
first bifurcation needs to be done on the basis of a frequeneygy plot, representing the vari-
ations of the NNM frequencies with respect to the energylldvaally, the case of a transition
involving a rapid though markedly broadening of the spéd¢taamonics of the excitation, has
been found for some frequencies; a case that has also beerveth®xperimentally. The bi-
furcation shares common features with the modulation lniéathat could be the dynamical
phenomena at work to transite to turbulence, but a completeacterization needs further re-
search that is postponed to future work. After the secorardation, wave turbulence sets in;
and it has been numerically verified that power spectra oftmeputed velocity fulfills the the-
oretical predictions given by WT for von Karman dynamieguations for perfect undamped
plates.
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