Effect of imperfections and damping on the type of nonlinearity of circular plates and shallow spherical shells

Abstract : The effect of geometric imperfections and viscous damping on the type of nonlinearity (i.e., the hardening or softening behaviour) of circular plates and shallow spherical shells with free edge is here investigated. The Von Kármán large-deflection theory is used to derive the continuous models. Then, nonlinear normal modes (NNMs) are used for predicting with accuracy the coefficient, the sign of which determines the hardening or softening behaviour of the structure. The effect of geometric imperfections, unavoidable in real systems, is studied by adding a static initial component in the deflection of a circular plate. Axisymmetric as well as asymmetric imperfections are investigated, and their effect on the type of nonlinearity of the modes of an imperfect plate is documented. Transitions from hardening to softening behaviour are predicted quantitatively for imperfections having the shapes of eigenmodes of a perfect plate. The role of 2:1 internal resonance in this process is underlined. When damping is included in the calculation, it is found that the softening behaviour is generally favoured, but its effect remains limited.
Type de document :
Article dans une revue
Mathematical Problems in Engineering, Hindawi Publishing Corporation, 2008, 2008, pp.678307. 〈10.1155/2008/678307〉
Liste complète des métadonnées

Littérature citée [46 références]  Voir  Masquer  Télécharger

https://hal-ensta.archives-ouvertes.fr/hal-00838876
Contributeur : Aurélien Arnoux <>
Soumis le : vendredi 11 mars 2016 - 16:50:05
Dernière modification le : jeudi 13 septembre 2018 - 15:24:05
Document(s) archivé(s) le : dimanche 13 novembre 2016 - 16:21:02

Fichier

zihardsoftimperfV2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Cyril Touzé, Cédric Camier, Gaël Favraud, Olivier Thomas. Effect of imperfections and damping on the type of nonlinearity of circular plates and shallow spherical shells. Mathematical Problems in Engineering, Hindawi Publishing Corporation, 2008, 2008, pp.678307. 〈10.1155/2008/678307〉. 〈hal-00838876〉

Partager

Métriques

Consultations de la notice

101

Téléchargements de fichiers

83