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Abstract

In order to build efficient reduced-order models (ROMs) for geometrically nonlinear vibrations of thin structures, a
normal form procedure is computed for a general class of nonlinear oscillators with quadratic and cubic nonlinearities. The
linear perturbation brought by considering a modal viscous damping term is especially addressed in the formulation.

A special attention is focused on how all the linear modal damping terms are gathered together in order to define a precise
decay of energy onto the invariant manifolds, also defined as nonlinear normal modes (NNMs). Then, this time-

independent formulation is used to reduce the dynamics governing the oscillations of a structure excited by an external
harmonic force. The validity of the proposed ROMs is systematically discussed and compared with other available
methods. In particular, it is shown that large values of the modal damping of the slave modes may change the type of
nonlinearity (hardening/softening behaviour) of the directly excited (master) mode. Two examples are used to illustrate the
main features of the method. A two-degrees-of-freedom (dof) system allows presentation of the main results through a
simple example. Then a water-filled circular cylindrical shell with external resonant forcing is considered, in order to show
the ability of the method to substantially reduce the dynamics of a continuous structure.
1. Introduction

The derivation of reduced-order models (ROMs) in the field of large-amplitude vibrations of continuous
structure is a very important topic, as corroborated by the increasing number of studies published on the
subject. Besides the classical textbooks dealing with the mathematical basis of the available methods [1–4], one
can find now tutorial articles with special emphasis on mechanical applications: see Ref. [5], or Ref. [6] which
introduces a special issue of the journal Nonlinear Dynamics on the subject. The problem may be roughly
defined as finding the best-suited subspace, the dimension of which is as small as possible, and that contains
the most important dynamical information. From this definition, available methods may be divided into two
classes. The first one uses a cloud of points in phase space, obtained from simulations or from experiments,

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2006.06.032
mailto:Cyril.Touze@ensta.fr


1

in order to build the reduced subspace that will contain most information. Proper orthogonal decomposition
(POD) falls into this class and has been used by a number of various authors in structural dynamics [7–10].
The method is, in essence, linear, as it furnishes the best orthogonal basis, which decorrelates the signal
components and maximizes variance.

The second class of method constructs and defines the researched subspaces from specific properties of the
dynamical system. The mathematical associated methods are: centre manifold theorem [1,11], normal form
theory [2,12] and inertial manifold [3]. In the field of mechanical systems, these methods have often been
gathered under the vocable ‘‘nonlinear normal modes’’ (NNMs). Following Rosenberg [13], Vakakis and
coworkers [14] define NNMs as specific periodic solutions in which the modal coordinates exhibit particular
features. Using centre manifold theory, Shaw and Pierre [15] define a NNM as an invariant manifold in phase
space, tangent at the origin to their linear counterpart. This definition is used in this article. Normal form
theory has also been exploited within the mechanical context [16,17], as equivalence between the methods
exists [12], which has been technically verified in Ref. [17] for an assembly of nonlinear oscillators thanks to a
real formulation of the normal form. As these invariant manifolds are generally curved, the method is
essentially nonlinear, and allows definition of invariant-based span of the phase space.

Application to reduced-order modelling enabled to show that a single NNM predicts the correct type of
nonlinearity (hardening/softening behaviour), whereas single linear mode truncation may give erroneous
result [17], as first noted by Nayfeh et al. [18]. Recent work within this field has been provided by Pierre, Shaw,
Pesheck and Jiang [19–23], who developed an involved numerical technique in order to overcome the
shortcomings of the asymptotic approach. Impressive results in terms of robustness to large amplitude have
been obtained, with the drawback of intensive numerical computations. In view of expressing approximate
solutions, Nayfeh constructs NNMs thanks to the multiple scales method [24], and provides useful
comparisons between methods.

Most of the precedent studies on NNM-based reduction deal with undamped systems. All the studies using
perturbation method set the damping at second-order so that its effect appears at the end of the perturbative
process [25,26]. By doing so, the amount of damping in a single NNM is the same as in its linear counterpart.
The method of invariant manifold, as proposed by Shaw and Pierre, can take the damping into account.
However, most of their studies treat conservative systems (see e.g. Ref. [20]), except the recent work of Jiang
et al. [23], where damping and forcing is included via the numerical Galerkin-based procedure.

The aim of this article is to propose a systematic asymptotic method which include the damping effects in
the reduction process. This is realized thanks to an improvement of the real normal form calculation presented
in Ref. [17], which was limited to conservative systems. General computations for an assembly of nonlinear
oscillators with viscous damping are derived. The normal form, governing the dynamics onto the invariant
manifold, shows that the whole damping of the system is taken into account in a reduced equation. The result
is then used in order to derive ROMs of continuous structures with external harmonic forcing. The
approximation, which consists of using a time-independent manifold to approximate the dynamics, is
discussed. Analytical and numerical results are shown on a discrete two-degrees of freedom (two-dof) system.
An important result concerning the dependence of the type of nonlinearity on the amount of damping is
derived. Finally, the ability of the method to deal with a continuous structure is shown by studying the
resonant response of a water-filled circular cylindrical shell. The reference solution for this problem has
already been studied and validated in Refs. [8,27,28]. The ability of the method to treat easily internal
resonance is underlined, as a 1:1 resonance is present in this case between the two companion modes.

2. Theoretical formulation

2.1. Framework

Large-amplitude vibrations of continuous structures (such as beams, archs, plates and shells) are
considered, so that the nonlinearities, arising from the geometrically nonlinear strain–displacement
relationship, are taken into account (see e.g. Ref. [29]). It is here assumed that the partial differential
equations (PDEs) of motion have been discretized, e.g. by projection onto the eigenmodes basis, so that the
starting point of this study is an assembly of N oscillators (N being arbitrarily large) with general quadratic
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and cubic polynomial nonlinearities. It reads: 8p ¼ 1 . . .N:

€X p þ o2
pX p þ 2xpop

_X p þ
XN

i¼1

XN

jXi

g
p
ijX iX j þ

XN

i¼1

XN

jXi

XN

kXj

h
p
ijkX iX jX k ¼ 0, (1)

where X p stands for the modal displacement associated to the pth eigenmode of eigenfrequency op. The
coefficients g

p
ij and h

p
ijk arise from the projection of the nonlinear terms of the PDE onto the linear modes.

A modal viscous damping of the form 2xpop
_X p has also been introduced. Deriving a correct mechanical

model of damping (including thermoelasticity, viscoelasticity, fluid–structure interaction, etc.) for a large class
of structure is an extremely difficult task, which also greatly depends on some specific properties of the
material used. The great majority of studies on vibrations of continuous structures uses an ad hoc viscous
modal damping as the one which is here postulated. It is assumed that the modal damping introduced gives an
excellent approximation of the energy losses in the considered structure, and has been finely tuned for each
mode by any available method (numerical prediction or experimental fitting). Underdamped eigenmodes,
corresponding to oscillatory motions, are considered, so that: 8p ¼ 1 . . .N : xpo1.

Being a linear term, the modal viscous damping has an effect on the eigenvalues of the structures. For mode
p, the two complex conjugated eigenvalues reads (where i is such that i2 ¼ �1):

l�p ¼ �xpop � iop

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2p

q
. (2)

Besides the real part of Eq. (2) which controls the decay rate of energy along the pth linear eigenspace, the

imaginary part shows that the damping also have an effect on the oscillation frequency. Let od ¼ op

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2p

q
be the eigenfrequency of the damped oscillator. Table 1 summarizes the amount of change in the linear
eigenfrequency provided by the viscous damper, for typical values that will be used in the remainder of
this study.

The main objective of this study is to define an effective method for building ROMs in order to realize
proper truncations in Eq. (1). Normal form theory will be used for this purpose. The undamped problem has
already been tackled in Refs. [17,30], thus attention will be paid here on the effect of the damping onto the
invariant-manifold equations and on the normal form expression.

As applications to lightly damped structures are in view (e.g. metallic plates, shells or panels), a simple
solution could have been to use the normal form computed in the undamped case, and then to add a viscous
damping term in the normal form, thus governing the decay rate onto the invariant manifold. This method
will be referred to as the ‘‘conservative NNM’’ case in the remainder of the study. It appears appealing for its
simplicity, and has already been used for example in Ref. [31]. However, two important drawbacks are
associated to this method. Firstly, the damping is underestimated in the ROM since it does not take into
account the damping of all the linear modes that are gathered together in the NNM construction. Secondly, it
appears legitimate to build a ROM that have, as a starting point, the usually measured linear data
(eigenfrequencies and modal damping), since these quantities are the easiest to measure on real structures.
Taking into account the linear perturbation brought by the modal damping into the normal form calculation
will thus overcome these two major drawbacks. The ROM obtained with this method will be referred to as
‘‘damped NNM’’ in the following.
Table 1

Deviation of the eigenfrequency for increasing values of the damping

xp od=op

0 1

0.001 0.99999

0.01 0.99995

0.1 0.99499

0.2 0.97980

0.3 0.95394



3

2.2. Nonlinear change of coordinates

A third-order asymptotic development is introduced, in a similar manner than what has already been done
in the undamped case [17]. The guidelines of the computation are the following. Firstly, it is assumed that no
low-order internal resonances between the eigenvalues are present (this assumption may be relaxed and
its effect on the results is easily obtained, see Ref. [17] and Section 5). Secondly, a real formulation is
kept throughout the calculations, so that the normal form will be expressed with oscillators. This is contrary
to the usual complex formulation used in normal form computations (see e.g. Refs. [2,12,16,32]), and have
important consequences for structural systems. Finally, the velocity Y p ¼ _X p is used so as to set Eq. (1) into its
first-order form.

The nonlinear change of coordinates reads

X p ¼ Rp þ
XN

i¼1

XN

jXi

ða
p
ijRiRj þ b

p
ijSiSjÞ þ

XN

i¼1

XN

j¼1

c
p
ijRiSj þ

XN

i¼1

XN

jXi

XN

kXj

ðr
p
ijkRiRjRk þ s

p
ijkSiSjSkÞ

þ
XN

i¼1

XN

j¼1

XN

kXj

ðt
p
ijkSiRjRk þ u

p
ijkRiSjSkÞ, ð3aÞ

Y p ¼ Sp þ
XN

i¼1

XN

jXi

ðap
ijRiRj þ bp

ijSiSjÞ þ
XN

i¼1

XN

j¼1

gp
ijRiSj þ

XN

i¼1

XN

jXi

XN

kXj

ðlp
ijkRiRjRk þ mp

ijkSiSjSkÞ

þ
XN

i¼1

XN

j¼1

XN

kXj

ðnp
ijkSiRjRk þ zp

ijkRiSjSkÞ. ð3bÞ

The analytical computations leading to the values of the introduced coefficients are summarized in Appendix
A. This nonlinear change of coordinates leads to cancellation of all the quadratic terms in the original
dynamics, as these terms are non-resonant as long as no low-order internal resonance relationship exists. On
the other hand, a number of the cubic coefficients introduced in Eq. (3) are vanishing since they correspond to
resonant cubic terms, which finally stay in the normal form. The normal dynamics can thus be explicitly
written: 8p ¼ 1 . . .N:

_Rp ¼ Sp, (4a)

_Sp ¼ � o2
pRp � 2xpopSp � ðh

p
ppp þ Ap

pppÞR
3
p � Bp

pppRpS2
p � Cp

pppR2
pSp

� Rp

XN

j4p

½ðh
p
pjj þ A

p
pjj þ A

p
jpjÞR

2
j þ B

p
pjjS

2
j þ ðC

p
pjj þ C

p
jpjÞRjSj�

"

þ
X
iop

½ðh
p
iip þ A

p
iip þ A

p
piiÞR

2
i þ B

p
piiS

2
i þ ðC

p
pii þ C

p
ipiÞRiSi�

#

� Sp

XN

j4p

ðB
p
jpjRjSj þ C

p
jjpR2

j Þ þ
X
iop

ðB
p
iipRiSi þ C

p
iipR2

i Þ

" #
. ð4bÞ

The coefficients ðA
p
ijk;B

p
ijk;C

p
ijkÞ arise from the cancellation of the quadratic terms. Their expressions are:

A
p
ijk ¼

XN

lXi

g
p
ila

l
jk þ

X
lpi

g
p
lia

l
jk, (5a)

B
p
ijk ¼

XN

lXi

g
p
ilb

l
jk þ

X
lpi

g
p
lib

l
jk, (5b)
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C
p
ijk ¼

XN

lXi

g
p
ilc

l
jk þ

X
lpi

g
p
lic

l
jk. (5c)

As compared to the conservative NNM case [17], introducing the damping in the linear operator leads to a
nonlinear change of coordinates, Eq. (3), which is now complete. The newly introduced coefficients:
fc

p
ij ; a

p
ij ; b

p
ij ; s

p
ijk; t

p
ijk; l

p
ijk; z

p
ijkg bring a perturbation which is at least of the order of the damping ratios fxig. More

precisely, Eq. (3) may be expanded as a power series of the small perturbative terms fxig. It is then found that

the coefficients that were non-zero in the conservative case (i.e. fa
p
ij ; b

p
ij ; g

p
ij ; r

p
ijk; u

p
ijk; m

p
ijk; n

p
ijkg) contains only even

powers of the damping ratios, and the new terms, fc
p
ij ; a

p
ij ;b

p
ij ; s

p
ijk; t

p
ijk; l

p
ijk; z

p
ijkg, contains only odd powers of the

damping ratios. As a consequence, the fA
p
ijk;B

p
ijk;C

p
ijkg terms defined in Eq. (5), can also be expanded as power

series of the damping ratios. It is then found that fA
p
ijk;B

p
ijkg contains only even powers of the damping

ratios and may be sorted according to Oðx0i Þ, Oðx
2
i Þ, Oðx

4
i Þ; . . . : So that, in the limit of a conservative systems,

A
p
ijk and B

p
ijk tends to a non-zero value. On the other hand, C

p
ijk sorts according to odd powers terms:

Oðx1i Þ, Oðx
3
i Þ, Oðx

5
i Þ; . . . : So that it is equal to zero in the conservative case. Some analytical values are presented

in Appendix A, Section A.4.

2.3. Comments

The dynamics, written with the introduced coordinates ðRp;SpÞ (nonlinearly related to the initial modal
coordinates), is now expressed within a curved invariant-based span of the phase space. As a result of the
invariance property, proper truncation can now be realized in Eq. (4). For example, it has already been
demonstrated in Ref. [17] that keeping a single NNM allows prediction of the correct type of nonlinearity,
whereas a single linear mode may predict erroneous result.

As a consequence of the behaviour of the ðA
p
ijk;B

p
ijk;C

p
ijkÞ terms with respect to the damping, a first-order

damping development (limited to OðxiÞ terms for lightly damped systems) shows that only C
p
ijk is affected. For

higher values of the damping, the three coefficients changes. Hence, the main effect of keeping the linear
damping term in the normal form computation is the occurrence of C

p
ijk, which gathers them together so as to

define a more precise decay of energy along the invariant manifolds. These new terms may be interpreted as
nonlinear dampers since they are linked to dynamical monoms of the form fR[R[

_R[g[¼i;j;p. Section 3 is
completely devoted to studying the effect of these new terms in the simplest possible truncation where a single
NNM is kept in the truncation.

Finally, it is pointed out that the proposed method is quick and easy to use. The computation of the
coefficients of Eq. (3) are analytically obtained once and for all. Their analytical values, detailed in Appendix A,
are easily implemented in any standard code so that all the coefficients of Eqs. (3) and (4) are obtained
immediately on a standard computer. This simplicity constitutes a great advantage as compared to other more
computationally involved methods.

2.4. External forces

Application of the proposed ROMs to real situations leads to consider external forces applied to the
structure. On the mathematical viewpoint, external forces must be taken into account in the normal form
computation, as proposed for example in Ref. [33]. However, it overshoots the mark of the present study, since
the formulation must turn to definitions of time-dependent invariant manifolds. In the mechanical context,
examples of such formulation have recently been performed. Jiang et al. [21,23] used the numerical Galerkin
procedure developed by Pesheck et al. [19,20], in order to compute time-dependent invariant manifolds for
structural systems with harmonic forcing. The proposed method requires a huge computational effort, since
the numerical procedure must be repeated for each forcing frequency. Moreover, a consequence of the
numerical procedure is that the results are no more expressed under a differential formulation, which renders
parametric studies numerically expensive. Other available studies are provided by recent work of Sinha et al.
[34], who apply similar ideas after a Lyapunov–Floquet transformation. But their method is restricted to
parametrically excited systems.
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In this study, the ROM will be obtained by adding the external force directly to the normal form. The main
advantage is that the calculation derived in Section 2.2 is intrinsical to the structure, whereas rigorous
computations including the external force must be done for each type of forcing studied. Secondly, the
perturbation brought by the external force onto the normal form is at least a second-order effect [2]. Hence,
this first approximation will be used to derive simple ROMs, and the results presented in the next sections
shows that qualitative and quantitative results are generally obtained.

3. Single-NNM motion

In this section, analytical results are presented for a single-NNM motion, i.e. for a single master coordinate
kept in the normal form, Eq. (4). The analytical results are provided by application of a perturbation
technique (the multiple scales method) so as to derive the most salient expected features of the dynamics.
As justified in Section 2.4, a harmonic forcing term is added, in order to balance the energy losses
due to the presence of damping, and thus to study the permanent solutions of the system. The dynamics
writes

€Rp þ o2
pRp þ 2xpop

_Rp þ ðh
p
ppp þ Ap

pppÞR
3
p þ Bp

pppRp
_R
2

p þ Cp
pppR2

p
_Rp ¼ Fp cosðOtÞ, (6)

where O is the frequency of the forcing, and F p its magnitude. fAp
ppp;B

p
ppp;C

p
pppg are computed from Eq. (5),

they contain the gathered influences of the neglected linear modes, that are enslaved in a single NNM.

3.1. Analytical results

An analytical solution is presented thanks to the multiple scales method. Damping, external forcing, as well
as nonlinear terms, are supposed to be small, so that all these terms are scaled by a small parameter e
introduced as a book-keeping. The dynamics writes:

€Rp þ o2
pRp þ 2expop

_Rp þ eðhp
ppp þ Ap

pppÞR
3
p þ eBp

pppRp
_R
2

p þ eCp
pppR2

p
_Rp ¼ eFp cosðOtÞ. (7)

The solution is sought through the following expansion:

Rpðt; eÞ ¼ Rp;0ðT0;T1; . . .Þ þ eRp;1ðT0;T1; . . .Þ þ � � � , (8)

where the time scales Tj ¼ ej t have been introduced. An internal detuning parameter s is also introduced in
order to express the nearness of the forcing frequency to the pth eigenfrequency:

O ¼ op þ es. (9)

The first-order expression leads to seek Rp;0 as:

Rp;0 ¼
1
2
aðT1Þe

iyðT1ÞeiopT0 þ c:c:; (10)

where c.c. stands for complex conjugate. The frequency–response curve is then easily deduced from the fixed
points of the dynamical system (evolving at the slow time scale T1) governing the variation of amplitude and
phase ðaðT1Þ; yðT1ÞÞ. It is expressed as a relation between the detuning s and the physical parameters of
Eq. (7). It reads:

s ¼ Gpa2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

p

4o2
pa2
� xpop þ

Cp
ppp

8
a2

� �2

vuut , (11a)

where:

Gp ¼
3ðhp

ppp þ Ap
pppÞ þ o2

pBp
ppp

8op

. (11b)

This solution will be compared to two other reduced-order solutions. The first one is obtained via the

conservative NNM method, where the damping term is heuristically added at the end of the process. With this
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formulation, the dynamics writes

€Rp þ o2
pRp þ 2xpop

_Rp þ ðh
p
ppp þ Ap

pppÞR
3
p þ Bp

pppRp
_R
2

p ¼ Fp cosðOtÞ. (12)

The frequency–response curve is thus the same as in Eq. (11a) with two major differences: Firstly, the nonlinear
damping term Cp

ppp, which gathers the effect of the damping of all the other oscillators, is equal to zero. Energy
decay, in the conservative NNM formulation, is only controlled by the linear damping term 2xpop

_Rp. Secondly,
the Ap

ppp and Bp
ppp terms do not depend on the damping in the conservative NNM case, whereas they do in the

damped NNM formulation. This also shows that the global energy losses in the structure, governed by all the
modal damping coefficients fxig, are better approximated in the damped NNM formulation.

Finally, the solution will also be compared with a single-linear-mode truncation. In this case, the dynamics writes:

€X p þ o2
pX p þ 2xpop

_X p þ gp
ppX 2

p þ hp
pppX 3

p ¼ F p cosðOtÞ, (13)

and the frequency–response curve is given by:

s ¼ ~Gpa2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2

p

4o2
pa2
� x2po2

p

s
, (14a)

where:

~Gp ¼
1

8op

3hp
ppp �

10gp
pp

2

8o2
p

!
. (14b)

In the next subsection, a simple two-dof system will be introduced. This simple system will serve as an example study
for highlighting the most important feature of the NNM formulation expressed herein.

3.2. A two-dof example

An extension of the simple mass–spring system selected in Refs. [17,35] is here considered, where modal
damping have been added to each equation. A forcing term on the first oscillator equation is also considered,
so that the dynamics writes

€X 1 þ o2
1X 1 þ 2x1o1

_X 1 þ
o2

1

2
ð3X 2

1 þ X 2
2Þ þ o2

2X 1X 2 þ
o2

1 þ o2
2

2
X 1ðX

2
1 þ X 2

2Þ ¼ F1 cosðOtÞ, (15a)

€X 2 þ o2
2X 2 þ 2x2o2

_X 2 þ
o2

2

2
ð3X 2

2 þ X 2
1Þ þ o2

1X 1X 2 þ
o2

1 þ o2
2

2
X 2ðX

2
1 þ X 2

2Þ ¼ 0. (15b)

All the subsequent analysis will consider the case where the first oscillator play the role of a central manifold,
thus small values of x1 will be selected. The dynamics onto this manifold is approximated by Eq. (6), with
p ¼ 1. The second oscillator will play the role of a damped manifold, the dynamics of which will be enslaved in
the first NNM. The effect of increasing values of x2 is studied.

Fig. 1 illustrates the behaviour of the three coefficients that gathers the effect of all the other oscillators in
the dynamics of the single-NNM equation: A1

111;B
1
111 and C1

111, for increasing values of x2. One can see in
particular that C1

111, which governs the damping onto the manifold, reaches a maximum for x2 ¼ 0:12 and
then decreases. The constant values, obtained for the same coefficients if the conservative NNM formulation
had been used, are also shown as dash-dotted lines.

A typical frequency–response curve is shown on Fig. 2, where the solutions given by application of the
multiple scales method to the damped NNM, Eq. (6), the conservative NNM, Eq. (12), and the linear-mode
truncation, Eq. (13), are presented.

The following comments are worth mentionable. Firstly, as already shown in Ref. [17], the prediction of the type
of nonlinearity given by the linear-mode truncation is erroneous, whereas the NNM yields the correct result. The
multiple scales applied to the conservative NNM and to the linear-mode truncation leads to the same maximum
values of the frequency–response. This is logical since in these two cases, x1 is the only term responsible for energy
losses, and first-order perturbative solutions then predicts the same maximum value [36]. On the other hand, one
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can see that the damped NNM case predicts a lower value for the maximum of amplitude, thanks to a better
approximation of the damping present in the system. As explicited in Eq. (11a), the amount of damping on the
invariant manifold is proportional to the square of the amplitude of the response. This result is in accordance with
the few experimental results reported in the literature. For example, precise measurements of the evolution of the
frequency and damping ratio with respect to the amplitude are provided for a beam with a nonlinear component in
Ref. [37], showing a quadratic dependence of the damping on the vibration amplitude.

3.3. Hardening/softening behaviour

As a consequence of the particular behaviour of the A1
111;B

1
111 and C1

111 coefficients with increasing values of
x2, the type of nonlinearity may change with increasing damping. The type of nonlinearity is governed by the
sign of Gp in Eq. (11). Gp40 implies hardening behaviour, whereas Gpo0 gives softening behaviour.
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8

Fig. 3 shows, for the two-dof example, that when x2 increases (simulating the presence of a slave mode
which is more and more damped) the type of nonlinearity of the first mode may be affected and change from
hardening to softening behaviour. In this case, it happens for x2 ¼ 0:081, so that the ratio of the two modal
damping is equal to: x2=x1 ¼ 81. Numerical confirmations for this specific example are presented in Section 4.

Another case is studied in Fig. 4, where now the two linear modal damping coefficients x1 and x2 vary of the
same quantity, so that the ratio x2=x1 is kept constant. This more realistic case could for example simulate a
structure whose global damping is raised by changing for example its material. In this case, it is also observed
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that a global increase of the amount of damping have a significant effect on the type of nonlinearity. From
these two examples, it is concluded that the damping tends to enhance and favours the softening behaviour.

This particular effect of the damping on the type of nonlinearity can thus significantly change predictions
based on the undamped system. The undamped two-dof example depends on two parameters only, o1 and o2,
and the type of nonlinearity has already been computed in Ref. [17]. Fig. 5 recalls the obtained result, where
the sign of G1 is reported in the map ðo2

1;o
2
2Þ. In this case, G1 has been computed from the conservative NNM

formulation.
Fig. 6 shows a line of this map, for a constant value of o2 ¼ 2. When damping is not considered, the type of

nonlinearity G1 displays a discontinuity at the internal resonance value where o1 ¼ 1, i.e. where 2:1 resonance
occurs: o2 ¼ 2o1. At this discontinuity point, the behaviour changes abruptly from softening to hardening
type. The discontinuity is due to the presence of internal resonance which leads to small denominators in the
solution. This kind of behaviour has been reported for continuous structures when trying to carefully predict
their type of nonlinearity: see Ref. [38] for the case of a buckled beam, Ref. [39] for the case of suspended
cables, Ref. [40] for free-edge shallow spherical shells, and Ref. [41] for simply supported circular cylindrical
shells. It was argued in Ref. [40] that in a small interval near the 2:1 internal resonance point, single-mode
solutions do not exist anymore, and the concept of the type of nonlinearity loses its meaning. However, the
size of this interval is not provided by a perturbative solution, and must be checked numerically.

Here, it is shown that taking into account the whole damping of the structure smoothens the discontinuity.
For increasing values of x2, Fig. 6 shows that the region of hardening behaviour after the 2:1 internal
resonance decreases, and can even disappear, which happens here for x2 ¼ 0:1. From this study, it can be
concluded that a careful prediction of the type of nonlinearity must include the damping in the analysis.
Further conclusions on this examples are drawn in Section 4 thanks to numerical simulations.

4. Numerical results with a discrete system

In this section, numerical frequency–response curves will be computed numerically for the two-dof example.
The software AUTO [42] is used for continuation of the solution branches with the pseudo-arclength method.
A reference solution is computed from the complete system, Eq. (15). It is compared to ROMs with one-dof
provided by the damped NNM formulation, Eq. (6), the conservative NNM formulation, Eq. (12), and the
single-linear-mode truncation, Eq. (13).

Fig. 7 shows a typical result, which confirms the analysis provided by the perturbative method. A very slight
damping for the master coordinate has been chosen: x1 ¼ 0:001, whereas x2 has been set to 0.01 to simulate
the effect of a damped coordinate. It is observed that the linear mode fails to predict the softening behaviour.
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The conservative NNM response curve shows a too large value of the maximum of amplitude, indicating that
not enough damping is present in the ROM. The damped NNM curve shows the best results, although a very
slight overprediction of the softening nonlinearity is present.

These trends of results are emphasized when F1 is increased, as shown in Fig. 8. The conservative NNM is
now very far from the reference solution, whereas the effect of the approximations used for generating the
damped NNM begins to have a quantitative effect on the maximum amplitude.
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Increasing the two damping terms, Fig. 9, shows that conservative NNM and linear-mode truncation gives
bad results, whereas the damped NNM allows a correct prediction of the real behaviour of the full system. In
these last two examples, it can be underlined that although the behaviour is qualitatively well approximated by
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the damped NNM ROM, some slight quantitative differences are present, resulting mainly from the time-
independent approximation of the manifold.

Now, the analytical predictions on the type of nonlinearity are numerically studied. First, two increasing
values of x2, corresponding to Fig. 3, are selected. For x2 ¼ 0:005, the behaviour is predicted to be of the
hardening type. Fig. 10(a) shows that the full system effectively behaves in a hardening way. This solution is
compared to the damped NNM ROM. The other two studied ROMS (conservative NNM and linear-mode
truncation) are not represented anymore. The numerical result shows that the reduced model presents an
enhanced hardening-type nonlinearity. For x2 ¼ 0:1 (Fig. 10b), once again the reduced model predicts the
correct softening-type behaviour, but for increasing values of the amplitude, the quantitative differences
between the full system and the ROM also increases.

Finally, a case corresponding to Fig. 6 is selected, in order to understand the behaviour of the system in the
vicinity of the 2:1 internal resonance. If the value of o1 is selected very near to 1, the 2:1 resonance is activated,
so that only coupled solutions are found numerically, as confirmed by an analytical study, see e.g. Ref. [36]. As
a consequence, o1 is set to 1.13. For this value, the 2:1 resonance is not activated and single-dof solutions has
been found to exist. The damping x2 is set to 0.005, so that a hardening nonlinearity is predicted (see Fig. 6),
but the transition to the softening-type behaviour is very near (it occurs for o1 ¼ 1:153). The numerical
simulations are shown on Fig. 11.

As predicted, hardening behaviour is first observed for the full system, but it rapidly turns to softening.
Hence the prediction is right, but a more thorough analysis shows that this first-order result is rapidly
corrected, thus changing the direction of the backbone curve. This result on a two-dof system may be
generalized for continuous structures, in the vicinity of the transition from hardening to softening. The ROM,
computed with the damped NNM formulation, also shows hardening behaviour turning to softening.
However, the hardening-type nonlinearity is enhanced, and the turning point of the backbone curve is found
for a larger amplitude. Thus, the global behaviour is found, but from F 1 ¼ 6e� 4, significant differences are
found between the full system and the reduced one. Simulations with x2 ¼ 0:1 has also been performed. In this
case, a softening behaviour is predicted (see Fig. 6), and it has been found by the simulations. These results are
not represented as the frequency–response curves look like the ones obtained on Fig. 10(b).

These results shed light on predictions of the type of nonlinearity presented by different authors [38–41].
Firstly, it is shown that the damping have an influence on the type of nonlinearity. In order to change the type



m
ax

(X
  ) 1

2.96 2.98 3 3.02 3.04
0

0.05

0.1

Ω(a)

m
ax

(X
  ) 1

2.8 3 3.2
0

0.05

0.1

0.15

Ω(b)

Fig. 10. Frequency–response curve for o1 ¼ 3, o2 ¼ 4:5, x1 ¼ 0:001 and two different values of x2 for which the type of nonlinearity

changes. (a) x2 ¼ 0:005, and F 1 ¼ 1e� 3; 2e� 3; 3e� 3. (b) x2 ¼ 0:1, and F 1 ¼ 1e� 2; 3e� 2; 6e� 2. Thick line: reference solution.

Thin line: NNM.

1.11 1.12 1.13 1.14 1.15 1.16
0

0.1

0.2

Ω

m
ax

(X
  ) 1

Fig. 11. Frequency–response curve for o1 ¼ 1:13, o2 ¼ 2, x1 ¼ 0:001 and x2 ¼ 0:005. Increasing values of F1 are successively:

1e� 4; 3e� 4; 6e� 4; 1e� 3 and 2e� 3. Thick line: reference solution. Thin line: NNM.

13
of nonlinearity, large values of the damping are necessary, and these values may be well beyond the usual values
of structural systems. Secondly, the behaviour in the vicinity of a 2:1 internal resonance has been studied. Two
important results has been derived. Firstly, the presence of the damping smoothens the discontinuity. Secondly,
in the vicinity of the transition from hardening to softening-type nonlinearity, the hardening behaviour may be
found but for very low amplitudes only, so that the effective behaviour may be said to be mainly of the
softening type. This important result led to the conclusion that for structures displaying these kind of sharp
transition (e.g. shallow spherical shells, see Refs. [40,43]), the hardening behaviour may be unobservable due to
the combined effect of damping, and the proximity of a softening region.

The conclusion on the ROM is that in any case, the correct qualitative behaviour is found, which is a good
result since extreme values has been taken here in order to test its quality. Unfortunately, quantitative
discrepancies have been found. They arise from the approximations made in the derivation of the reduced
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model. Firstly, the time-invariant manifold shows its limits in predicting with high accuracy the correct value
of the type of nonlinearity, although the sign is always good. Secondly, the third-order asymptotic
development used for computing the manifold limits the accuracy of the method for very large amplitude of
vibrations, as already mentioned in Refs. [44,30]. However, important advantages from the method are the
following: it is valid for a large class of moderate amplitudes, it is straightforward in its use and do not ask for
intensive computational effort, it gives as a result nonlinear EDOs that are very useful for parametric studies.
In the next section, the method will be used to derive a reduced model from a continuous structure: a water-
filled circular cylindrical shell.

5. A continuous system

5.1. Model equations

A water-filled perfect circular cylindrical shell, simply supported, and harmonically excited in the
neighbourhood of the fundamental frequency, is selected in order to derive a NNM-based ROM for a
continuous structure. A detailed discussion on the model can be found in Refs. [8,27], so that only the
important results with regard to the reduction process, are recalled. Donnell’s nonlinear shallow-shell theory is
used to take into account large-amplitude motions, so that in-plane inertia, transverse shear deformation and
rotary inertia are neglected. The equation of motion for the transverse deflection wðx; y; tÞ writes

Dr4wþ ch _wþ rh €w ¼ f � pþ
1

R

q2F
qx2
þ

1

R2

q2F

qy2
q2w
qx2
� 2

q2F
qxqy

q2w
qxqy

þ
q2F
qx2

q2w

qy2

� �
, (16)

where D is the flexural rigidity, E Young’s modulus, n Poisson’s ratio, h the shell thickness, R the mean shell
radius, r the mass density, c the coefficient of viscous damping, p the radial pressure applied to the surface of
the shell by the contained fluid, and f is a point excitation, located at ð~y; ~xÞ:

f ¼ ~f dðRy� R~yÞdðx� ~xÞ cosðotÞ. (17)

F is the usual Airy stress function, which satisfies the following compatibility equation:

1
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� �2

�
q2w
qx2

q2w

R2qy2

" #
. (18)

A circumferentially closed circular cylindrical shell of length L is considered. Mathematical expressions of
boundary conditions are given in Refs. [8,9]. The contained fluid is assumed to be incompressible, inviscid and
irrotational. The expression of p, which describes the fluid–structure interaction, is given in Ref. [27].

The PDE of motion is discretized by projection onto the natural modes basis. The reference solution, whose
convergence has been carefully verified in Refs. [27,41], is computed by keeping 16 natural modes. The
transverse deflection is thus expanded via

wðx; y; tÞ ¼
X3
m¼1
k¼1

½Am;knðtÞ cosðknyÞ þ Bm;knðtÞ sinðknyÞ� sinðlmxÞ þ
X4
m¼1

Að2m�1Þ;0ðtÞ sinðlð2m�1ÞxÞ, (19)

where n is the number of circumferential waves, m the number of longitudinal half-waves (for symmetry
reasons, only odd values are retained), lm ¼ mp=L; Am;nðtÞ and Bm;nðtÞ are the generalized coordinates. By use
of the Galerkin method, 16 second-order differential equations are obtained. They are in the form of the
general equations used as the starting point of this study, Eq. (1). The following correspondence between
modal coordinates is used: A1;n and B1;n are X 1 and X 2, A3;n and B3;n are X 3 and X 4, A1;2n and B1;2n are X 5 and
X 6, A3;2n and B3;2n are X 7 and X 8, A1;3n and B1;3n are X 9 and X 10, A3;3n and B3;3n are X 11 and X 12, asymmetric
modes A1;0, A3;0, A5;0 and A7;0 are X 13 to X 16. Finally, modal damping is postulated.

The reference solution is obtained for the following shell: L ¼ 520mm, R ¼ 149:4mm, h ¼ 0:519mm,
E ¼ 2:06� 1011 Pa, r ¼ 7800 kgm�3, rF ¼ 1000 kgm�3 (water-filled shell), and n ¼ 0:3. The excitation
frequency o is set in the vicinity of the fundamental mode (n ¼ 5, m ¼ 1), whose eigenfrequency is 79.21Hz.
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Modal damping x1;n ¼ 0:0017 is assumed. The harmonic point excitation has a magnitude of 3N and is
located at ~x ¼ L=2 and ~y ¼ 0. Finally, the displacements are normalized with respect to the thickness h, and
the time with respect to the period of the first eigenfrequency o1;n. The frequency–response curves are
numerically obtained with the software AUTO.

5.2. Reduced model with NNMs

The response of the shell in the vicinity of an asymmetric mode is investigated. As a consequence of the
rotational symmetry displayed by the shell, asymmetric modes appears by pairs, and 1:1 internal resonance
exists between each pair of companion modes. Hence, the minimal model which could capture accurately the
dynamics is composed of two NNMs. The ROM is build by applying the nonlinear change of coordinates,
Eq. (3), to the dynamical systems, so that after this operation, the dynamics is written in terms of the new
coordinates ðRp;SpÞ that are the continuation of the linear ones. Thanks to the invariance property, the
truncation can now be done without losing important informations. Two couples of master coordinates,
ðR1;S1Þ and ðR2;S2Þ are selected, which are related to ðA1;n; _A1;nÞ and ðB1;n; _B1;nÞ. All other normal coordinates
ðRp;SpÞ, for pX3, are set to zero. The normal dynamics with these two master coordinates derives from
Eq. (4a): one has just to write this system for p ¼ 1; 2. The dynamics onto this four-dimensional invariant
manifold is thus governed by:

€R1 þ o2
1R1 þ 2x1o1
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where the coefficients A
p
ijk;B

p
ijk and C

p
ijk are given by Eq. (5). In case of low-order internal resonance, the

dynamical monoms corresponding to resonant terms should normally be added into the normal form, Eq. (4),
which were derived for the case of no internal resonance. However, the case considered here (a perfect shell)
does not produce new terms because of the perfect symmetry of the initial problem. For example, one could
have find a monom like R2

1R2 in the first equation as it is a resonant term. However, this dynamical term is not
present in the original equation because h1

112 ¼ 0, so it is not present in the normal form.
For comparison, the ROM obtained with the ‘‘conservative NNM’’ formulation is also computed. It can be

obtained from Eq. (20) by setting C
p
ijk ¼ 0, and A

p
ijk;B

p
ijk to their values obtained for xi ¼ 0; 8i.

Frequency–response curves are numerically obtained with AUTO for the three following models: reference
solution with 16-dof, and the two ROMs corresponding to ‘‘damped’’ and ‘‘conservative’’ NNMs. For these
simulation, the original modal coordinates are simply recovered by using Eq. (3).

Fig. 12 shows the frequency–response curves for the driven mode A1;n and its companion mode B1;n. The full
system simulation with 16-dof is presented with a thick line. The ‘‘conservative NNM’’ case is plotted with a
dash-dotted line. One can see that all the dynamical features of the original system are recovered: the two
branches are found as well as the nature of the bifurcations and the stability. This result was awaited since it is
a fundamental property of the normal form to recover the essential dynamical properties, thus the qualitative
behaviour (number and nature of bifurcations) will always be predicted by the ROM. As already mentioned in
the two-dof example, a higher value of the maximum amplitude is found, showing that the damping has been
underestimated. This is corrected with the ‘‘damped NNM’’ ROM, which gives a very good result, although
one may argue that the softening effect is a little bit overestimated.

Recovering the original modal coordinates with Eq. (3) shows that, thanks to the curvature of the invariant
manifold in phase space, slight contributions are present onto all others linear modal coordinates. For
comparison, the sixth most important modal amplitudes are represented in Fig. 13, for the full-order model,
and the ‘‘damped NNM’’ ROM. This figure shows that the reduced model with two equations allows to
recover all the modal amplitudes with good accuracy.

This example shows that the method can be easily used for reducing the nonlinear dynamics of
geometrically nonlinear structures. The main advantage relies in the quickness of the method: computing all
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the coefficients appearing in Eqs. (3), (5), (4) is immediate on a standard PC for this 16-dof full-order system.
As two approximations are used to produce the ROM (namely a time-invariant manifold is used, and it is
computed by a third-order asymptotic development), it is awaited that the results can deteriorate for very
large-amplitude motions. However, this example shows that up to two times the thickness of the shell, the
ROM is robust.

6. Conclusion

In this paper, the real normal form of an assembly of N oscillators (with N arbitrarily large) with general
polynomial quadratic and cubic nonlinearities and modal viscous damping, has been computed. This
computation allows expression of the dynamics in an invariant-based span of the phase space, thus allowing
better truncations than the ones obtained with the conventional Galerkin method. The normal form
computation is then applied for derivation of reduced-order models (ROMs) of continuous structures
featuring geometrical nonlinearities.

The main advantage of this formulation relies in its simplicity and rapidity in use, as compared to other
more computationally involved methods. A particular emphasis has been put on the effect of the damping on
the reduced equations. Through analytical formulas and numerical computations on a two-dof example, it has
been shown that the damping must be taken into account for a precise prediction of the type of nonlinearity.
A large value of the modal damping of the neglected mode have an influence on the type of nonlinearity of the
master (driven) mode and may change the behaviour from hardening to softening.

For derivation of ROMs of externally forced structure, the approximation, consisting in using time-
independent manifolds for reducing the systems, has been discussed. The drawback is that for high values of
the amplitude of the forcing, the reduced equations may produce results that are quantitatively slightly
different. The advantage is that the reduced equations are intrinsical to the structure, and one do not have to
compute them for each studied forcing. Numerical results on the two-dof system have shown that the reduced
model always predicts the right qualitative behaviour, but shows some slight discrepancies when increasing the
forcing amplitude. It underlines the limits of the reduced equations for too high amplitudes.

Finally, application of the method to a water-filled circular cylindrical shell allows reducing the dynamics
from a 16-dof model to two-dof. Numerical results show a very close agreement, so that one can expect the
reduced models to capture dynamics for vibration amplitudes up to two times the thickness of the shell.
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Appendix A. Computation of the nonlinear change of coordinates

In this section, the computations allowing one to get the nonlinear change of coordinates, are detailed.
Normal form computations are essentially sequential, so that one has to treat the quadratic terms first, then
the cubic ones. The results are here presented as linear systems, allowing one to get the introduced coefficients
as a function of the physical ones fg

p
ij ; h

p
ijkg.

A.1. Quadratic terms

The introduced quadratic coefficients fa
p
ij ; b

p
ij ; c

p
ij ; a

p
ij ;b

p
ij ; g

p
ijg are computed by solving the following linear

systems:

8p ¼ 1 . . .N; 8i ¼ 1 . . .N:
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ap
ii ¼ �o

2
i c

p
ii, (A.1a)

bp
ii ¼ �4xioib

p
ii þ c

p
ii, (A.1b)

gp
ii ¼ 2ða

p
ii � o2

i b
p
iiÞ � 2xioic

p
ii, (A.1c)

8p ¼ 1 . . .N; 8i ¼ 1 . . .N � 1; 8j4i . . . N:

ap
ij ¼ �c

p
ijo

2
j � c

p
jio

2
i , (A.1d)

bp
ij ¼ �2ðxioi þ xjojÞb

p
ij þ c

p
ij þ c

p
ji, (A.1e)

gp
ij ¼ a

p
ij � o2

i b
p
ij � 2xjojc

p
ij , (A.1f)

gp
ji ¼ a

p
ij � o2

j b
p
ij � 2xioic

p
ji, (A.1g)

8p ¼ 1 . . .N; 8i ¼ 1 . . .N:

�o2
i g

p
ii ¼ �o

2
pa

p
ii � 2xpopa

p
ii � g

p
ii, (A.2a)

�4xioib
p
ii þ gp

ii ¼ �o
2
pb

p
ii � 2xpopb

p
ii, (A.2b)

2ðap
ii � o2

i b
p
iiÞ � 2xioig

p
ii ¼ �o

2
pc

p
ii � 2xpopg

p
ii, (A.2c)

8p ¼ 1 . . .N; 8i ¼ 1 . . .N � 1; 8j4i . . . N:

�gp
ijo

2
j � gp

jio
2
i ¼ �o

2
pa

p
ij � 2xpopa

p
ij � g

p
ij, (A.2d)

�2ðxioi þ xijojÞb
p
ij þ gp

ij þ gp
ji ¼ �o

2
pb

p
ij � 2xpopb

p
ij , (A.2e)

ap
ij � o2

i b
p
ij � 2xjojg

p
ij ¼ �o

2
pc

p
ij � 2xpopg

p
ij , (A.2f)

ap
ij � o2

j b
p
ij � 2xioig

p
ji ¼ �o

2
pc

p
ji � 2xpopg

p
ji. (A.2g)

The first subsystem (A.1) allows expression of fap
ij ;b

p
ij ; g

p
ijg as functions of fa

p
ij ; b

p
ij ; c

p
ijg, so that Eqs. (A.1) is

substituted for in Eqs. (A.2), hence obtaining a closed system for fa
p
ij ; b

p
ij ; c

p
ijg. This linear system is then solved

by simple inversion, giving the full expressions of the searched coefficients.

A.2. Cubic terms

The following systems are found:

8p ¼ 1 . . .N; 8i ¼ 1 . . .N:

lp
iii ¼ �o

2
i t

p
iii, (A.3a)

mp
iii ¼ u

p
iii � 6xiois

p
iii, (A.3b)

np
iii ¼ 3r

p
iii � 2xioit

p
iii � 2o2

i u
p
iii, (A.3c)

zp
iii ¼ �3o

2
i s

p
iii þ 2t

p
iii � 4xioiu

p
iii, (A.3d)

8p ¼ 1 . . .N ; 8i ¼ 1 . . .N � 1; 8j4i . . .N:

np
jii ¼ r

p
iij � 2xjoj t

p
jii � o2

i u
p
iij, (A.4a)
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zp
ijj ¼ �o

2
i s

p
ijj þ t

p
jij � 4xjoju

p
ijj , (A.4b)

zp
jii ¼ �o

2
j s

p
iij þ t

p
iij � 4xioiu

p
jii, (A.4c)

np
ijj ¼ r

p
ijj � o2

j u
p
jij � 2xioit

p
ijj , (A.4d)

lp
iij ¼ �o

2
j t

p
jii � o2

i t
p
iij , (A.4e)

lp
ijj ¼ �o

2
j t

p
jij � o2

i t
p
ijj , (A.4f)

mp
iij ¼ u

p
jii þ u

p
iij � 4xiois

p
iij � 2xjojs

p
iij , (A.4g)

mp
ijj ¼ u

p
jij þ u

p
ijj � 2xiois

p
ijj � 4xjojs

p
ijj , (A.4h)

np
iij ¼ 2r

p
iij � 2xioit

p
iij � 2o2

i u
p
jii � o2

j u
p
iij , (A.4i)

np
jij ¼ 2r

p
ijj � 2xjoj t

p
jij � o2

i u
p
jij � 2o2

j u
p
ijj , (A.4j)

zp
iij ¼ �2o

2
i s

p
iij þ 2t

p
jii þ t

p
iij � 2xioiu

p
iij � 2xjoju

p
iij , (A.4k)

zp
jij ¼ �2o

2
j s

p
ijj þ 2t

p
ijj þ t

p
jij � 2xioiu

p
jij � 2xjoju

p
jij , (A.4l)

8p ¼ 1 . . .N; 8i ¼ 1 . . .N � 2; 8j4i . . .N � 1; 8k4j . . .N:

lp
ijk ¼ �o

2
kt

p
kij � o2

j t
p
jik � o2

i t
p
ijk, (A.5a)

mp
ijk ¼ u

p
kij þ u

p
jik þ u

p
ijk � 2ðxioi þ xjoj þ xkokÞs

p
ijk, (A.5b)

np
kij ¼ r

p
ijk � 2xkokt

p
kij � o2

i u
p
jik � o2

j u
p
ijk, (A.5c)

np
jik ¼ r

p
ijk � 2xjoj t

p
jik � o2

i u
p
kij � o2

ku
p
ijk, (A.5d)

np
ijk ¼ r

p
ijk � 2xioit

p
ijk � o2

j u
p
kij � o2

ku
p
jik, (A.5e)

zp
kij ¼ �o

2
ks

p
ijk þ t

p
jik þ t

p
ijk � 2ðxioi þ xjojÞu

p
kij, (A.5f)

zp
jik ¼ �o

2
j s

p
ijk þ t

p
kij þ t

p
ijk � 2ðxioi þ xkokÞu

p
jik, (A.5g)

zp
ijk ¼ �o

2
i s

p
ijk þ t

p
kij þ t

p
jik � 2ðxjoj þ xkokÞu

p
ijk, (A.5h)

8p ¼ 1 . . .N; 8i ¼ 1 . . .N:

�o2
pr

p
iii � 2xpopl

p
iii � ðh

p
iii þ A

p
iiiÞ ¼ �o

2
i n

p
iii, (A.6a)

�o2
ps

p
iii � 2xpopm

p
iii ¼ zp

iii � 6xioim
p
iii, (A.6b)

�o2
pt

p
iii � 2xpopn

p
iii � C

p
iii ¼ 3lp

iii � 2xioin
p
iii � 2o2

i z
p
iii, (A.6c)

�o2
pu

p
iii � 2xpopz

p
iii � B

p
iii ¼ �3o

2
i m

p
iii þ 2np

iii � 4xioiz
p
iii, (A.6d)

8p ¼ 1 . . .N; 8i ¼ 1 . . .N � 1; 8j4i . . .N:

�o2
pt

p
jii � 2xpopn

p
jii � C

p
iij ¼ lp

iij � 2xjojn
p
jii � o2

i z
p
iij , (A.7a)
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�o2
pu

p
ijj � 2xpopz

p
ijj � B

p
ijj ¼ �o

2
i m

p
ijj þ np

jij � 4xjojz
p
ijj , (A.7b)

�o2
pu

p
jii � 2xpopz

p
jii � B

p
jii ¼ �o

2
j m

p
iij þ np

iij � 4xioiz
p
jii, (A.7c)

�o2
pt

p
ijj � 2xpopn

p
ijj � C

p
jji ¼ lp

ijj � o2
j z

p
jij � 2xioin

p
ijj , (A.7d)

�o2
pr

p
iij � 2xpopl

p
iij � ðh

p
iij þ A

p
iij þ A

p
jiiÞ ¼ �o

2
j n

p
jii � o2

i n
p
iij , (A.7e)

�o2
pr

p
ijj � 2xpopl

p
ijj � ðh

p
ijj þ A

p
ijj þ A

p
jijÞ ¼ �o

2
j n

p
jij � o2

i n
p
ijj , (A.7f)

�o2
ps

p
iij � 2xpopm

p
iij ¼ zp

jii þ zp
iij � 4xioim

p
iij � 2xjojm

p
iij , (A.7g)

�o2
ps

p
ijj � 2xpopm

p
ijj ¼ zp

jij þ zp
ijj � 2xioim

p
ijj � 4xjojm

p
ijj , (A.7h)

�o2
pt

p
iij � 2xpopn

p
iij � ðC

p
jii þ C

p
ijiÞ ¼ 2lp

iij � 2xioin
p
iij � 2o2

i z
p
jii � o2

j z
p
iij , (A.7i)

�o2
pt

p
jij � 2xpopn

p
jij � ðC

p
jij þ C

p
ijjÞ ¼ 2lp

ijj � 2xjojn
p
jij � o2

i z
p
jij � 2o2

j z
p
ijj, (A.7j)

�o2
pu

p
iij � 2xpopz

p
iij � B

p
iij ¼ �2o

2
i m

p
iij þ 2np

jii þ np
iij � 2xioiz

p
iij � 2xjojz

p
iij , (A.7k)

�o2
pu

p
jij � 2xpopz

p
jij � B

p
jij ¼ �2o

2
j m

p
ijj þ 2np

ijj þ np
jij � 2xioiz

p
jij � 2xjojz

p
jij , (A.7l)

8p ¼ 1 . . .N ; 8i ¼ 1 . . .N � 2; 8j4i . . .N � 1; 8k4j . . .N:

�o2
pr

p
ijk � 2xpopl

p
ijk � ðh

p
ijk þ A

p
ijk þ A

p
kij þ A

p
jikÞ ¼ �o

2
kn

p
kij � o2

j n
p
jik � o2

i n
p
ijk, (A.8a)

�o2
ps

p
ijk � 2xpopm

p
ijk ¼ zp

kij þ zp
jik þ zp

ijk � 2ðxioi þ xjoj þ xkokÞm
p
ijk, (A.8b)

�o2
pt

p
kij � 2xpopn

p
kij � ðC

p
jik þ C

p
ijkÞ ¼ lp

ijk � 2xkokn
p
kij � o2

i z
p
jik � o2

j z
p
ijk, (A.8c)

�o2
pt

p
jik � 2xpopn

p
jik � ðC

p
kij þ C

p
ikjÞ ¼ lp

ijk � 2xjojn
p
jik � o2

i z
p
kij � o2

kz
p
ijk, (A.8d)

�o2
pt

p
ijk � 2xpopn

p
ijk � ðC

p
kji þ C

p
jkiÞ ¼ lp

ijk � 2xioin
p
ijk � o2

j z
p
kij � o2

kz
p
jik, (A.8e)

�o2
pu

p
kij � 2xpopz

p
kij � B

p
kij ¼ �o

2
km

p
ijk þ np

jik þ np
ijk � 2ðxioi þ xjojÞz

p
kij, (A.8f)

�o2
pu

p
jik � 2xpopz

p
jik � B

p
jik ¼ �o

2
j m

p
ijk þ np

kij þ np
ijk � 2ðxioi þ xkokÞz

p
jik, (A.8g)

�o2
pu

p
ijk � 2xpopz

p
ijk � B

p
ijk ¼ �o

2
i m

p
ijk þ np

kij þ np
jik � 2ðxjoj þ xkokÞz

p
ijk. (A.8h)

The same procedure as for the quadratic terms applies. Systems (A.3)–(A.5) express flp
ijk; m

p
ijk; n

p
ijk; z

p
ijkg as

linear functions of fr
p
ijk; s

p
ijk; t

p
ijk; u

p
ijkg. Hence, substitution for Eqs. (A.3) in Eqs. (A.6), (A.4) in Eqs. (A.7)

and (A.5) in Eqs. (A.8), provides linear closed systems, with unknowns fr
p
ijk; s

p
ijk; t

p
ijk; u

p
ijkg. The solution is

obtained with simple linear matrix inversion, and backsubstitution into Eqs. (A.3)–(A.5), gives finally the full
expression of the searched coefficients.

A.3. Vanishing cubic coefficients

Some of the cubic coefficients are equal to zero because they correspond to resonant terms. The resonance
condition, in this case of damped nonlinear oscillator, is formulated so as to maintain continuity with
the undamped case. Thus, small denominators of the form 1=xi are not allowed. This leads to cancel the
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following terms:

8p ¼ 1 . . .N : rp
ppp ¼ sp

ppp ¼ tp
ppp ¼ up

ppp ¼ 0,

lp
ppp ¼ mp

ppp ¼ np
ppp ¼ zp

ppp ¼ 0,

8j4p . . .N : r
p
pjj ¼ s

p
pjj ¼ t

p
jpj ¼ t

p
pjj ¼ u

p
pjj ¼ u

p
jpj ¼ 0,

lp
pjj ¼ mp

pjj ¼ np
pjj ¼ np

jpj ¼ zp
pjj ¼ zp

jpj ¼ 0,

8iop : r
p
iip ¼ s

p
iip ¼ t

p
iip ¼ t

p
pii ¼ u

p
iip ¼ u

p
pii ¼ 0,

lp
iip ¼ mp

iip ¼ np
iip ¼ np

pii ¼ zp
iip ¼ zp

pii ¼ 0,

A.4. Full expressions and asymptotic developments

As the complete analytical expressions of all the coefficients fa
p
ij ; b

p
ij ; c

p
ij ; a

p
ij ; b

p
ij ; gp

ij ; r
p
ijk; s

p
ijk; t

p
ijk; u

p
ijk; l

p
ijk;

mp
ijk; n

p
ijk; z

p
ijkg are very lengthy and would cover a number of pages, it has been chosen to give only the

expressions of the linear systems allowing their computation via a simple matrix inversion (Sections A.1
and A.2).

However, complete solutions for a few of these coefficients are here given, in order to show explicitly their
dependence with the damping terms. Asymptotic developments with respect to the order of the damping
coefficients xi can effectively be realized. It shows that:
�
 fap
ij ; b

p
ij ; g

p
ij ; r

p
ijk; u

p
ijk;m

p
ijk; n

p
ijkg, which were non-zero in the conservative case, expand via even powers of the

damping only. Two distinct examples are given below:

�
 The full expression of coefficients with only two discrete indexes may be given as they fit into a single page.

For example, the full expression for a
p
ii reads:

a
p
ii ¼ � ½o

4
p � 12xpo

3
pxioi þ 8x2po

2
po

2
i þ 32o2

px
2
px

2
i o

2
i � 6o2

i o
2
p þ 20x2i o

2
i o

2
p

� 8o3
i xpopxi � 96opxpx

3
i o

3
i þ 8o4

i þ 64x4i o
4
i �g

p
ii=

ð64o6
i x

2
i þ 16o4

i o
2
p � 32o4

i x
2
i o

2
p þ 64x4i o

4
i o

2
p þ 20x2i o

2
i o

4
p

þ 16o2
i o

4
px

2
p � 8o2

i o
4
p þ o6

p � 128o5
i x

3
i xpop þ 192o4

i x
2
i x

2
po

2
p

� 96xpo
3
px

3
i o

3
i þ 32x2po

4
px

2
i o

2
i � 12xpo

5
poixi � 64o5

i xpopxi � 64o3
i x

3
po

3
pxiÞ. ðA:9Þ

And its first-order development, with respect to the small parameters fxi; xpg, reads:

a
p
ii ¼

ðo2
p � 2o2

i Þg
p
ii

ð�o2
p þ 4o2

i Þo2
p

þOðx2Þ. (A.10)
�
 When three indices are present, the full expressions are two lengthy. Only the first-order developments of
two of them, a

p
ij and b

p
ij, are here given:

a
p
ij ¼
ðo2

p � o2
i � o2

j Þg
p
ij

D
p
ij

þOðx2Þ,

b
p
ij ¼

2g
p
ij

D
p
ij

þOðx2Þ,

where D
p
ij ¼ ðop þ oi � ojÞðop þ oi þ ojÞðop � oi þ ojÞðop � oi � ojÞ, and Oðx2Þ stands for terms that are

at least quadratic in the damping. These expressions explicitely shows that the first term, of the order of
Oðx0Þ, is equal to the result found in the conservative case (see Ref. [17]), and the first correction brought by
the damping is of order two.
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�
 fcp
ij ; a

p
ij ; b

p
ij ; s

p
ijk; t

p
ijk; l

p
ijk; z

p
ijkg, which were zero in the conservative case, expand via odd powers of the

damping only. For example:

c
p
ij ¼

2g
p
ij

D
p
ij
2
½ð�2o3

po
2
j � 3o4

i op þ 2o3
po

2
i þ o4

j op þ 2o2
j o

2
i op þ o5

pÞxp

þ ð2o2
po

3
j � 2o2

i ojo2
p þ 3o4

i oj � o5
j � o4

poj � 2o3
j o

2
i Þxj

þ ð�4o2
po

3
i þ 4o5

i � 4o3
i o

2
j Þxi� þOðx3Þ.

Hence, in the limit of a conservative system, these fc
p
ij ; a

p
ij ; b

p
ij ; s

p
ijk; t

p
ijk; l

p
ijk; z

p
ijkg are equal to zero, and the

results for an assembly of undamped oscillators, already derived in Ref. [17], are recovered.
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