The role of boundary conditions in the instability of one-dimensional systems

Abstract : We investigate the instability properties of one-dimensional systems of finite length that can be described by a local wave equation and a set of boundary conditions. A method to quantify the respective contributions of the local instability and of wave reflections in the global instability is proposed. This allows to differentiate instabilities that emanate from wave propagation from instabilities due to wave reflections. This is illustrated on three different systems, that exhibit three different behaviors. The first one is a model system in fluid mechanics (Ginzburg-Landau equation), the second one is the fluid-conveying pipe (Bourrières equation), the third one is the fluid-conveying pipe resting on an elastic foundation (Roth equation). © 2006 Elsevier SAS. All rights reserved.
Type de document :
Article dans une revue
European Journal of Mechanics - B/Fluids, Elsevier, 2006, 25 (6), pp.948-959. 〈10.1016/j.euromechflu.2006.01.001〉
Liste complète des métadonnées

https://hal-ensta.archives-ouvertes.fr/hal-00838884
Contributeur : Aurélien Arnoux <>
Soumis le : lundi 22 juillet 2013 - 11:25:56
Dernière modification le : jeudi 10 mai 2018 - 02:02:26

Identifiants

Collections

Citation

Olivier Doaré, Emmanuel De Langre. The role of boundary conditions in the instability of one-dimensional systems. European Journal of Mechanics - B/Fluids, Elsevier, 2006, 25 (6), pp.948-959. 〈10.1016/j.euromechflu.2006.01.001〉. 〈hal-00838884〉

Partager

Métriques

Consultations de la notice

127