A representation result for Gamma-limit of supremal functionals

Abstract : In this paper we prove a representation result for the weak L infinity Gamma-limit of a sequence of supremal functionals $F_n(u): =ess \: sup_{x \: in \: A} f_n(x,u(x))$ where A is a subset of $R^n$ and u a function in L infinity (from A to $R^N$). This Gamma-limit is still a supremal functional and we give an explicit formula to obtain it. The basic tools we use are the definition of level convexity and the related notion of duality introduced by Volle.
Type de document :
Article dans une revue
Journal of Nonlinear and Convex Analysis, Yokohama, 2003, 2, pp.245-268
Liste complète des métadonnées

https://hal-ensta.archives-ouvertes.fr/hal-00975031
Contributeur : Aurélien Arnoux <>
Soumis le : lundi 7 avril 2014 - 17:37:15
Dernière modification le : mercredi 6 décembre 2017 - 16:46:01

Identifiants

  • HAL Id : hal-00975031, version 1

Collections

Citation

Ariela Briani, Francesca Prinari. A representation result for Gamma-limit of supremal functionals. Journal of Nonlinear and Convex Analysis, Yokohama, 2003, 2, pp.245-268. 〈hal-00975031〉

Partager

Métriques

Consultations de la notice

64