Mixed Higher Order Spectral Finite Elements for Reissner-Mindlin Equations in the Time Domain

Gary Cohen 1 Pascal Grob 1
1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : We construct a class of high order numerical approximations for the Reissner-Mindlin plate model in the time domain, based on mixed spectral finite elements with mass lumping. In this way we obtain explicit time-stepping schemes. We first compare the Reissner-Mindlin model to three-dimensional (3D) solutions to validate our method. Then, we show the advantages of the schemes in terms of accuracy and computational time.
Type de document :
Article dans une revue
SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2007, 29 (3), pp.986-1005. 〈10.1137/050642332〉
Liste complète des métadonnées

https://hal-ensta.archives-ouvertes.fr/hal-00976782
Contributeur : Aurélien Arnoux <>
Soumis le : jeudi 10 avril 2014 - 13:24:31
Dernière modification le : jeudi 11 janvier 2018 - 06:20:23

Identifiants

Collections

Citation

Gary Cohen, Pascal Grob. Mixed Higher Order Spectral Finite Elements for Reissner-Mindlin Equations in the Time Domain. SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2007, 29 (3), pp.986-1005. 〈10.1137/050642332〉. 〈hal-00976782〉

Partager

Métriques

Consultations de la notice

125