A spatial high-order hexahedral discontinuous Galerkin method to solve Maxwell's equations in time domain

Gary Cohen 1 Xavier Ferrieres Sébastien Pernet 1
1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : In this paper, we present a non-dissipative spatial high-order discontinuous Galerkin method to solve the Maxwell equations in the time domain. The non-intuitive choice of the space of approximation and the basis functions induce an important gain for mass, stiffness and jump matrices in terms of memory. This spatial approximation, combined with a leapfrog scheme in time, leads also to a fast explicit and accurate method. A study of the dispersive error is carried out and a stability condition for the proposed scheme is established. Some comparisons with other schemes are presented to validate the new scheme and to point out its advantages. Finally, in order to improve the efficiency of the method in terms of CPU time on general unstructured meshes, a strategy of local time-stepping is proposed.
Type de document :
Article dans une revue
Journal of Computational Physics, Elsevier, 2006, 217 (2), pp.340-363. 〈10.1016/j.jcp.2006.01.004〉
Liste complète des métadonnées

https://hal-ensta.archives-ouvertes.fr/hal-00977109
Contributeur : Aurélien Arnoux <>
Soumis le : jeudi 10 avril 2014 - 17:31:51
Dernière modification le : jeudi 11 janvier 2018 - 06:20:23

Identifiants

Collections

Citation

Gary Cohen, Xavier Ferrieres, Sébastien Pernet. A spatial high-order hexahedral discontinuous Galerkin method to solve Maxwell's equations in time domain. Journal of Computational Physics, Elsevier, 2006, 217 (2), pp.340-363. 〈10.1016/j.jcp.2006.01.004〉. 〈hal-00977109〉

Partager

Métriques

Consultations de la notice

203