Validated Solution of Initial Value Problem for Ordinary Differential Equations based on Explicit and Implicit Runge-Kutta Schemes

Abstract : We present in this report our tool based on Ibex library which provides an innovative and generic pro- cedure to simulate an ordinary differential equation with any Runge-Kutta scheme (explicit or implicit). Our validated approach is based on the classical two steps integration: the Picard-Lindelöf operator to enclose all the solutions on a one step, and the computation of the approximated solution and its Local Troncature Error. This latter is computed with a generic and elegant approach using interval arithmetic and Fréchêt derivatives. We perform a strong experimentation through many numerical experiments coming from three different benchmarks and the results are shown and compared with competition.
Liste complète des métadonnées


https://hal-ensta.archives-ouvertes.fr/hal-01107685
Contributeur : Alexandre Chapoutot <>
Soumis le : vendredi 13 mars 2015 - 23:19:31
Dernière modification le : vendredi 17 février 2017 - 16:13:39
Document(s) archivé(s) le : dimanche 13 septembre 2015 - 21:31:14

Fichier

report_rk.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01107685, version 6

Citation

Julien Alexandre Dit Sandretto, Alexandre Chapoutot. Validated Solution of Initial Value Problem for Ordinary Differential Equations based on Explicit and Implicit Runge-Kutta Schemes. [Research Report] ENSTA ParisTech. 2015. <hal-01107685v6>

Partager

Métriques

Consultations de
la notice

242

Téléchargements du document

178