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Global optimization approach for the climbing problem of

multi-stage launchers∗

O. Bokanowski† E. Bourgeois‡ A. Désilles§ H. Zidani¶

Abstract

This paper deals with a problem of trajectory optimization of the flight phases of a three-stage
launcher. The aim of this optimization problem is to minimize the consumption of ergols that is need
to steer the launcher from the Earth to the GEO. Here we use a global optimization procedure based
on Hamilton-Jacobi-Bellman approach and consider a complete model including the transfer from
the GTO to the GEO orbit. The Hamilton-Jacobi approach proposed here takes also into account
parametric optimisation that appears in the flight phases. The work presented in this paper has been
performed in the frame of CNES Launchers’ Research and Technology program

AMS Classification: 34H05, 49J15, 49L20

Keywords: multi-stage launchers, trajectory optimization, minimum time problem, Hamilton-Jacobi-Bellman

approach

1 Introduction - A revoir

Trajectory optimization for space launchers is a classical problem in optimal control. The pioneering
Goddard [1] problem is perhaps the simplest model. It consists in maximizing the final altitude of
the rocket, for a vertical flight, with a given initial propellant allocation. In one dimension this model is
described by three state variables: the altitude r of the launcher, its velocity v and its massm. The system

is submitted to the aerodynamic force (the drag
−→
FD) and is controlled via the thrust force

−→
FT . Since this

work, several studies were made on theoretical properties of the optimal trajectories [2, 3, 4] and numerical
methods allowing to calculate these trajectories [2, 5, 4, 6, 7, 8, 9, 10], and in particular [11, 12, 13, 14]
for the ascent problem.

Both classes of methods mentioned above present several difficulties when the optimization problem
is non-convex. Indeed in this case the above methods are not able to avoid local minima, especially for
shooting methods that have the reputation to have a small convergence radius. The initialization of these
methods can also be very hard.

In this work, we investigate the resolution of the climbing problem by the so-called Hamilton-Jacobi-
Bellman (HJB) approach. This approach is based on the Dynamic Programming Principle (DPP) studied
by R. Bellman [15]. It leads to a characterization of the value function as a solution of an HJB equation

∗This work is partially supported by Centre National d’Études Spatiales (CNES), under the grant RT-CR-430-1304-
CNES.
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which is a first order nonlinear Partial Differential Equation (PDE) in dimension d, where d is the number
of variables involved in the problem. The HJB equation may be viewed as a differential form of the DPP.
An important breakthrough for this approach occurred in the 80’s, when the notion of viscosity solutions
of nonlinear PDEs was introduced by Crandall and Lions [16, 17, 18]. This viscosity theory allows to
establish a rigorous framework for the theoretical and numerical study the HJB equations arising in
optimal control theory. The contributions in this direction do not cease growing, see the book of Bardi
and Capuzzo-Dolcetta [19], and the Appendix A by Falcone in the same reference.

An interesting by-product of the HJB approach is the synthesis of the optimal control in feedback
form. Once the HJB equation is solved, for any starting point, the reconstruction of the optimal tra-
jectory can be performed in real time. Also the method gives a global optimum and do not need any
initialization procedure, see [20]. Another advantage of the HJB approach is that state or mixed state-
control constraints can be taken into account. Of course, we should be careful when handling viscosity
solutions for the HJB equation associated with such problems, see [21, 22].

Although the theoretical framework of the HJB approach is well known, and despite its advantages,
this approach is seldom used in real control problem, because of the difficulties of computing the solution
of the HJB equation in higher dimensions [23].

In this work we aim at showing that combining several new techniques for the HJB approach we can
obtain efficient solutions to a fully nonlinear control problem.

More precisely, we investigate the potential of the HJB approach for the climbing problem in the case
a launcher of the Ariane5 class (the simulations performed in this paper will consider a launcher with
capacity of injection of roughly 10T on a GTO orbit). For a given payload (fixed final mass), we aim at
steering the launcher to the Geostationary Orbit (GEO) with minimal propellant consumption.

The paper is organized as follows. Section 2 is devoted to the presentation of the physical model and
the related optimal control problem. In Section 3 we present the optimization approach that will be used
in this paper. The results of numerical simulations are presented in section 4. Some technical definitions
are given in appendix A.

2 Problem statement. Mathematical formulation.

This section is aimed at describing the physical problem and its mathematical formulation. Several frames
will be defined to describe the motion of the launcher in the most suitable way. Then the list of forces
involved during the flight sequence will be defined. The differential system that governs the trajectory
will be obtained by Newton’s law.

2.1 Physical model

Let O denotes the center of the Earth. We define a first frame RI = (O,~iI ,~jI , ~kI) to be considered

as inertial. The vector ~kI is co-linear with the North-South axis of rotation, the vector ~iI is located
in the equatorial plane of the Earth and points to the Greenwich meridian at an elected date set here
as t = 0. The vector ~jI completes the orthonormal frame (see figure 1(a)). Consider also the frame

RR = (O,~iR,~jR, ~kR) (see figure 1(b)) that coincides with RI at time t = 0 and that is rotating with the

Earth around the axis ~kI = ~kR with the angular velocity Ω.
In all the sequel, we denote by rT the Earth’s mean radius and G the mass center of the vehicle. The

spherical coordinates of G are (r, L, ℓ), where r is the distance between G and O, L is the longitude and ℓ
is the latitude (voir figure 2(a)). The vehicle’s position at time t = 0 will be denoted G0 and its spherical
condidates are (r0, L0, ℓ0).

Two other local frames will be also used: A vertical local frame RV = (G,~iV ,~jV , ~kV ) centred at G

and defined such that ~kV is colinear with ~rG and pointing in the same direction. The vector ~jV is in the
orthogonal plane to ~kV and pointing to the local North. The third vector ~iV := ~jV ∧ ~kV is defined in
such way to complete the orthonormal frame (see figure 2).
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Figure 1: Quasi inertial and geocentric frames
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Figure 2: Local vertical and dynamic frames

The frame RV will be linked to the center of mass of the launcher and should therefore evolve over
time along the trajectory of the launcher. We will also need to consider the local inertial frame RIL

defined as the vertical local coordinate RR = (G0,~iV ,~jV , ~kV ) at time t = 0.

Let X : t 7−→ (x(t), y(t), z(t)) be the trajectory of G in the quasi-inertial frame RR, and let ~V :=

ẋ~iR + ẏ~jR + ż~kR be the relative velocity. We define
−→
V in the local frame RV by its polar coordinate:

the modulus v, the azimuth χ which is the angle entre ~iV et la projection de
−→
V sur (~iV ,~jV ), the path

inclinaison (flight angle) γ which is the angle between the projection of
−→
V on (~iV ,~jV ) and ~iV (see

Figure 2).
Likewise the local coordinate system related to the trajectory center of mass, we define also a local

tangential frame related to the velocity of the launcher. For this we introduce the ”dynamical” orthonor-

mal frame RD = (G,~iD,~jD, ~kD) defined such that ~iD has the same direction as the velocity
−→
V (i.e.,

~iD =
−→
V

‖
−→
V ‖

), ~kD is the unitary vector in the plane (~iD, ~kV ) perpendicular to ~iD and satisfying ~kV ·~kD < 0

and ~jD = ~kD ∧~iD (see figure 2). The frame RD will be useful to express some forces that act on the
launcher.

According to the flight phase of the launcher, it may be appropriate to consider the Cartesian coor-
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dinates of the position of G and its velocity ( ~X, ~V ) in the frame RR with

−→
X =





x
y
y



 ,
−→
V =





Vx
Vy
Vz



 .

The launcher may be also represented by the spherical coordinates of the position of G in RR and those
of the velocity in the frame RV . These coordinates will be denoted by (r, L, l, v, χ, γ). The formulas to
pass from one coordinate system into another are classical and can be found in [?, Reference de Anya].

2.2 Axis, angles, and forces

During the phases of flight, the launcher is subject to different forces. We will express each of these forces
in the most appropriate frame. For this, we will need to introduce some additional notations for the
angles between the velocity and the axis of the launcher:

• angle of incidence α: is the angle between the velocity vector and the axis of the launcher in the
plane (~iV , ~kV );

• sideslip angle δ: is the angle measured in the plane (~iV ,~jV );

• and the bank or heeling angle µ: is the angle between the axis of the shuttle and the axis ~kV .

Angle of attack α

xV

zV

α

~V

Sideslip angleβ

xV

yV

β

~V

zVµ

Bank angle µ

Figure 3: Angles of the launcher

The launcher is subject to different forces that we describe here below:

• Gravitational force:
−→
Fg = m−→g , where m is the mass of the vehicle and −→g = −g(r)er =

−g(r)(cos γ iR + sin γ jR) is the gravitational field. The term g(r) is given by

g(r) :=
µ

r2
,

where µ is Earth’s gravitational constant (we neglect high order term in the harmonic expansion of
the gravitational field).

• Aerodynamic forces: The best frame suited to express the aerodynamic forces here is RD. We
will assume that the plane of symmetry of the vehicle coincides with the plane (xV , zV ) of the
dynamical reference frame ( i.e., the sideslip and the heeling angles are zero during atmospheric
flight, see figure 3). Under this assumption, the aerodynamic forces are:

– Drag force:
−→
FD = −FD(r, v, α)~iD opposite to the velocity

−→
V . In this paper, we consider that

FD is given by
FD(r, v, α) = SrQ(r, v)(Cx(r, v) + Cxx|α|)
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where α is the incidence angle andQ(r, v) is the dynamic pressure defined byQ(r, v) = 1
2ρ(r)v

2,
with ρ(r) the atmospheric density, Sr is the reference surface, Cx and Cxx are aerodynamic
coefficients.

– Lift function:
−→
FL = −FL(r, v, α)~kD orthogonal to the velcity vector, and with modulus

FL(r, v, α) = SrQ(r, v)(CL(r, v) + CLL|α|).

Where CL(r, v), CLL are aerodynamic coefficients.

The resultante of the aerodynamic forces is
−→
FA =

−→
FD +

−→
FL.

• Thrust force: It is assumed that the direction of the thrust force coincides with the axis of the
launcher. Assume (µ = 0), the orientation of the thrust in the dynamical reference frame is defined
by the incidence α and and the slip δ. Then the trust force is given by:

−→
FT = FT (r)(cosα cos δ~iD − cosα sin δ~jD + sinα~kD),

with FT (r) = βg0Isp − SP (r) where g0 = 9.81 ms−2, P (r) is the atmospheric pressure, and β (flow
rate), Isp (specific impulse) and S (surface) depend on the flight phases (see section 2.4).

• Coriolis force FC et centripetal force FCP . These functions are defined by:

~FC = 2m
−→
Ω ∧

−→
V et ~FCP = m

−→
Ω ∧ (

−→
Ω ∧

−−→
OG),

where
−→
Ω is the Earth’s angular velocity. These two forces are important to be taken into account as

far as the launchers’s trajectory is represented in a relative reference frame and not in the inertial
one.

Remarque 2.1. The aerodynamic forces are generally defined with the relative launcher’s speed with
respect to the air (or equivalently, relative to the ground when the atmosphere is considered static and
therefore rigidly driven by the Earth’s rotation).

Remarque 2.2. The sideslip angle is assumed to be zero during the atmospheric flight (i.e., the launcher
flies with zero incidence angle). To be more rigorous, if we consider a static atmosphere, so rigidly driven
by the Earth’s rotation, the launcher has a non-zero velocity component out of plane relative to the air
or on the ground (except in the limiting case of a launch from zero latitude). This assumption seems
reasonable for a launch close to Ecuador, since the sideslip angle generally remains very low in the
atmospheric phase .

2.3 Motion’s equations

Taking into account all these forces, and using Newton’s laws of motion, we get:

d ~X

dt
=

−→
V , (1a)

m
d
−→
V

dt
=

−→
Fg +

−→
FA +

−→
FT − 2m

−→
Ω ∧

−→
V −m

−→
Ω ∧ (

−→
Ω ∧

−−→
OG). (1b)
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Straightforward calculations yield to the motion’s equation in the spherical coordinates:

dr

dt
= v sin γ (2a)

dL

dt
=

v

r

cos γ sinχ

cos ℓ
(2b)

dℓ

dt
=

v

r
cos γ cosχ (2c)

dv

dt
= −g(r) sin γ −

FD(r, v, α)

m
+
FT (r)

m
cosα cos(δ)

+Ω2r cos ℓ(sin γ cos ℓ− cos γ sin ℓ cosχ) (2d)

dγ

dt
= − cosγ

(
g(r)

v
−
v

r

)

+
FL(r, v, α)

vm
+
FT (r)

vm
sinα

+2Ω cos ℓ sinχ+Ω2 r

v
cos ℓ(cos γ cos ℓ+ sin γ sin ℓ cosχ) (2e)

dχ

dt
= −

v

r
cos γ tan ℓ sinχ− 2Ω(sin ℓ− tanγ cos ℓ cosχ)

+Ω2 r

v

sin ℓ cos ℓ sinχ

cos γ
−

FT (r)

mv cos(γ)
cos(α) sin(δ) (2f)

Of course, the evolution of the mass is also very important to get a complete model. This evolution is
given by the ODE:

ṁ(t) = β(t). (3)

where the function β is known and represents the consumption flow rate and depends on the launcher’s
parameters. The mass of the launcher includes the stracture’s mass, the payload, and propellant’s mass:

m(t) :=MEAP +ME1 +ME2 +mF
︸ ︷︷ ︸

Structure

+ mCU
︸ ︷︷ ︸

Payload

+MP,EAP(t) +MP,E1(t) +MP,E2(t)
︸ ︷︷ ︸

Propellant

,

where MEAP,ME1,ME2,mF denote respectively the mass of the boosters, the first and second stages,and

the firin; mCU denotes the mass of the payload; and MP,EAP(t),MP,E1(t),MP,E2(t) denote the mass, at
time t ≥ 0 of propellant respectively in the boosters, in the first and second stages.

Equations (1) and (2) are two different formulations for the same motion. In the sequel, we will
see that the first formulation is convenient to describe the atmospheric phase, while the second is more
suitable for the flight outside the atmosphere (more details will be given in the next sections).

2.4 The flight’s phases

The launcher that is considered in this paper is of Ariane-5 type with three-stages. The latter are parts
of the launcher that contain propellant and provide propulsion for the launcher. We denote by βEAP ,
βE1 and βE2 the mass flow rates for the boosters, the first and the second stage respectively. These rates
are functions depending in time, see figure ??.

Our aim is to minimize the ergol’s consumption while steering the vehicle from a given initial position
on the Earth to the GEO. The launcher evolves according to the following phases.

Phase 0: This phase starts when the vehicle leaves the launch base. Both boosters along with the stage
E1 are ignited and consume propellant with flow rates βEAP and βE1 respectively .

• Phase 0-1: vertical flight for a fixed time τ0. The flight is vertical relative to the ground in the
approximate initial RIL. Thus, during this phase, the orientations of the thrust are constant :

θ(t) := θ0 =
π

2
, ψ(t) := ψ0 for t ∈ [0, τ0],

where ψ0 is the shooting azimuth.
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Figure 4: Orbites GEO et GTO

• Phase 0-2: the launcher rotates with constant speed ωbasc changing its orientation during a time
interval τbasc:

θ(t) =
π

2
+ ωbasct, ψ(t) = ψ0 for t ∈ [τ0, τ0 + τbasc].

• Phase 0-3: The direction of the thrust is then fixed at the final values of the previous sub-phase
until the angle of incidence is zero; i.e. when α = 0 or equivalently

cos(α) =
~FT · ~V

‖ ~FT ‖‖~V ‖
≡ 1.

• Phase 0-4: Zero incidence flight until rejection of the boosters. In this paper, we consider that the
boosters are ejected after the exhaustion of the propellants, and since the propellant flow βEAP

is known the rejection’s time is known and will be denoted t1. Note that this assumption is not
restrictive and the whole study can be extended to other situations where the boosters are ejected
after reaching an accelerometric threshold or a threshold ratio of propulsive forces (even if it remains
some propellant).

The durations τ0, τbasc and t1 are fixed, while the value of the parameters ψ0 and ωbasc are unknowns
that must be determined in such a way to optimize the launcher’s consumption. The set of possible
positions corresponding to a large sample of these parameters can be obtained by a simple integration
of the motion’s equations. The computation of the trajectories can be performed in parallel and with a
high accuracy.

Phase 1. during this phase the propulsion is assured only by first stage E1. The engine is on and
consume with the propellant flow βE1 until exhaustion. The firing is rejected after reaching a threshold
heat flux. The ejection of the stage E1 may be followed by a ballistic short flight during a fixed duration
τ1 that corresponds to the end of the propellant contained in the stage E1.

Phase 2. during this phase, the second stage is ignited. It ends at the time of injection of the launcher
on a GTO orbit near its perigee. The choice of the transfer orbit GTO is considered as an optimization
parameter. It requires the GTO having its ascending node (one of the two intersection points of the orbit
with the plane Equatorial) located on GEO orbit.

Phase 3. Once the launcher has reached a GTO, the engine of the second floor is off. Then follows
a ballistic flight phase until it reaches the apogee of the GTO. The duration of this flight is not fixed
and depends on the GTO parameters. In our study, we assume that the GTO- GEO orbital transfer is
performed through an impulsionnel boost (to change the velocity’s modulus and direction) . The amount
of propellant required for the orbital transfer depends on the the GTO parameters and the launcher’s
mass. It can be determined via Tsiolkovski formula, see appendix A. In particular, we note that this
amount of propellant depends only on the orbital inclination i of the GTO relative to the GEO (see figure
4(b)).
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2.5 Optimal control problem

The optimization problem that we aim to study consists of:

Minimizing the launcher’s consumption for steering a given payload mCU until the GEO

Control laws: During the Phase 0, the launcher’s trajectory is defined by the choice of the parameters
ψ0, ωbasc. Then the launcher will be controlled by measurable functions representing the evolution of
the incidence α(·) and the sideslip angle δ(·). In the following, we will use the notation u = (α, δ) for
the control law. The admissible controls are measurable functions that take their values in the compact
U = [−π, π]2. Note also Uad the set all those admissible control inputs.

Parameters. We distinguish the control variables, which are time dependent functions, from the pa-
rameters that do not evolve in time but are still important for the path optimization. The parameters
are:

• p1 := (ψ0, ωbasc) ∈ PIni, where ψ0 is the shooting azimut, ωbasc is the angular velocity.

• the inclinaition angle i of the GTO from the GEO. This parameter lies in an interval I.

Objective function. Let tf,GEO be the time of injection on the GEO and tf be the time of injection
on the GTO orbit. The objective is to maximize the mass of remaining propellent after the injection on
the GEO orbit: MP,E2(tf,GEO). This remaining mass can be expressed as

MP,E2(tf,GEO) =MP,E2(tf )−△M(tf , i)

where i is the inclination of the GTO orbit, and △M(tf , i) is the amount of propellent for orbit transfer
between GTO and GEO. The later is explicitely given using the Tseolkovski formula (28 ) such that

∆V (i) = g · Isp · ln

(
m(tf )

tf −△M(tf , i)

)

where △V (i) is defined by (27) and m(tf ) is the global mass at the time tf defined by

m(tf ) = mCU +ME2 +MP,E2(tf ).

One can easily deduce the mass of remaining propellent is equal to

MP,E2(tf,GEO) =MP,E2(tf ) · e
−∆V (i)

g·Isp − (mCU +ME2) ·
(

1− e−
∆V (i)
g·Isp

)

(4)

Mathematical formulation of the control problem. Suppose the state of the launcher at any time
is described by a vector y ∈ R

d (representing the position, velocity and mass).
{
ẏ(t) = f(t, y(t), u(t), p), t ≥ 0,
y(0) = y0,

(5)

with y0 is the initial condition corresponding to position 0, velocity 0, and the initial mass of the launcher
(total mass including the structure’s mass, the payload and the ergol). The optimization problem is then:







Maximize MP,E2(tf )−△M(tf , i)

subject to:
ẏ(t) = f(t, y(t), u(t), p) t ∈ (0, tf ),
y(0) = 0,
u(t) ∈ U, p.p. t ∈ [0, tf ], y(t) ∈ K, ∀ t ∈ [0, tf ],
y(tf ) ∈ Ci, i ∈ I,
p ∈ PIni, tf > 0.

(6)
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The state-constraints set K is a closed subset of Rd that represents the set where the feasible trajectories
lie (this set will be defined in the section devoted to numerical simulations). The target Ci ⊂ R

d represents
the GTO associated to the inclination angle i ∈ I .

3 Global optimization approach

As described in the previous sections, the launcher’s motion follows a dynamical system that we can write
in a general form as:

ẏ(t) = f(t, y(t), u(t), p) for t ≥ 0, y(0) = y0, (7)

where u ∈ Uad.
Let C be a nonempty closed set of Rd that will represent the target. Let K be a nonempty closed set (of

“state constraints”). These constraints are obtained via physical considerations and provide restrictions
on the domain where the trajectory can lies (the set K will be defined clearly in the section devoted to
numerical simulations). For t a fixed positive time, we will say that a solution of (7) yu,px is admissible
on [0, t] if it is associated to an admissible control u ∈ Uad and a feasible parameter p ∈ PIni, and y

u,p
x (s)

belongs to K for every s ∈ [0, t].
The control problem is defined by:







inf φ(tf , y
u,p
x (tf ), i)

yu,px is the solution of (7) associated to (u(·), p)

u(·) ∈ Uad, p ∈ PIni, tf > 0

yu,px (τ) ∈ K ∀τ ∈ [0, tf ],

and yu,px (tf ) ∈ Ci for i ∈ I.

(P)

The above optimization problem depends on several parameters (namely, final time tf , p = (ψ0, ωbasc),
and i) that have to be chosen to get the optimal cost. In general, to solve this problem with the HJB
problem, the vector of parameters Π should be considered as an additional state vector evolving under
the simple dynamics:

Π̇(t) = 0.

This simple remark sets back the problem in the general framework where the state is (y,Π)T. However,
in this formulation the dimension of the state will increase and will become d + 4 which automatically
increases the dimension of the HJB equation associated to the control problem.

For the launcher’s path optimisation problem, we are concerned by a control problem where the
dynamics depends on the parameters in a very specific way. More precisely, there exist a fixed (known)
time t1 > 0 such that on the interval [0, t1], the function f does not depend on the control and depends
only on 2 parameters in PIni. On [t1, t2], the function depends only on the control variable and has no
explicit dependency on parameters. In other terms, for every (x, u) ∈ R

d × U and every p ∈ PIni, we
have:

f(t, x, u, p) =

{

f1(t, x, p) for t ∈ (0, t1)

f2(t, x, u) for t ∈ (t1, tf)

We introduce X0 the set of all positions that can be reached from y0 with parameters p ∈ PIni:

X0 = {ypx(t1) | p ∈ PIni, ẏ
p
x(t) = f1(t, y

p
x(t), p), y

p
x(0) = y0}.
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Therefore, the problem (P) is equivalent to:







inf
i∈I

inf φ(tf , y
u
x(tf ), i)

ẏux(t) = f(t, yux(t), u(t)) t ∈ (t1, tf ),

yux(t1) ∈ X0,
u ∈ Uad, tf > 0

yux(τ) ∈ K ∀τ ∈ [t1, tf ],

and yux(tf ) ∈ Ci.

(8)

In order to perform a global optimization of the above problem, we will first discretize the set I and
consider a set of finite values i ∈ I∆. For every value i ∈ I∆, we first solve the sub-problem (Pi):







inf φ(tf , y
u
x(tf ), i)

ẏux(t) = f(t, yux(t), α(t)) t ∈ (t1, tf ),

yux(t1) ∈ X0, u ∈ Uad, tf > 0

yux(θ) ∈ K ∀θ ∈ [0, tf ],

and yux(tf ) ∈ Ci.

(9)

Then a comparison of the optimal performances of the (Pi)’s can be carried out for finite number of
parameters i ∈ I.

Now, the problem (Pi) can be solved by using HJB theory. We will describe this part in the next
subsection.

3.1 HJB approach for (Pi)

Now, we consider the optimal control problem for steering the launcher until the GTO (with a given
inclination angle i). Keeping in mind the expression of the cost function (4), it turns out that the inner
control problem (Pi) (for a fixed i is equivalent to the optimal control problem:

(P)







Minimize tf ,

with

{
ẏx(t) = f(t, yx(t), u(t)) , t ∈ [t1, tf ],
yx(t1) ∈ X0,

tf ≥ 0, u(t) ∈ U for a.e. t ∈ [0, tf ],

yx(tf ) ∈ Ci,

where f : R+ × R
d ×A → R

d is the dynamics, Ci ⊂ R
d is the target.

Let us recall some theoretical results concerning the HJB approach for problem (P). In this section,
we assume that f and Ψ satisfy some classical assumptions:

(A1) f is a continuous function, and for every (t, x) ∈ R+ × R
d the set f(t, x,A) is closed and convex.

There exists c0 ≥ 0 s.t. supa∈A |f(t, ξ, a)| ≤ c0(1 + |ξ|). Moreover, for every R > 0, there exists
LR > 0, such that

∀t ∈ R+, ∀ξ, z ∈ B(0, R), sup
a∈A

|f(t, ξ, a)− f(t, z, a)| ≤ LR|ξ − z|.

Consider the minimal time function, which associates to any point x ∈ R
d the minimal time needed to

reach the target with an admissible trajectory yux solution of (??) and satisfying yux(θ) ∈ K:

T (x) := inf{t ≥ 0, ∃α ∈ L∞((0, t);A), yux(t) ∈ C, and yux(θ) ∈ K ∀θ ∈ [0, t]}. (10)
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Many works have been devoted to the regularity of the minimum time function T . When K ≡ R
d, and

under some local metric properties around the target, the function T is the unique continuous viscosity
solution of an HJB equation [?].

Here, without assuming any controllability assumption at the boundary of the target, and neither at
the boundary of K, the function T may be discontinuous. Indeed, if, for x ∈ R

d, no trajectory yux reaches
the target C, or if any trajectory leaves K before reaching the target, we set T (x) = +∞. Nevertheless,
the next proposition states that T is lsc and characterizes it by using the knowledge of the function ϑ.

To do so, we first consider a Lipschitz continuous function ϑ0 : Rd −→ R such that

ϑ0(x) ≤ 0 ⇔ x ∈ C. (11)

For instance, we may choose ϑ0(x) := dC(x); then ϑ0 is Lipschitz continuous (see, for instance, [?]). In
particular, we have capt(0) = C = {x, ϑ0(x) ≤ 0}.

Consider the value function u associated to the Mayer problem with final cost ϑ0:

u(x, t) := inf{ϑ0(y
α
x (t)), α ∈ Aad, y

α
x (θ) ∈ K ∀θ ∈ [0, t]}. (12)

It is well known that the capture basin is characterized by

capt(t) = {x, u(x, t) ≤ 0}.

However, function u is a value function of a state constrained problem, and we are still faced with the
problem of characterizing this value function if no controllability assumption is made. To overcome this
difficulty, we consider another Lipschitz continuous function g : Rd −→ R such that

g(x) ≤ 0 ⇔ x ∈ K. (13)

Note that such a function always exists since we can choose g(x) := dK(x).
We then consider the control problem

ϑ(x, t) := inf

{

max

(

ϑ0(y
α
x (t)), max

θ∈[0,t]
g(yαx (θ))

)

, α ∈ Aad

}

. (14)

Problem (14) has no “explicit” state constraint. In fact, in this new setting, the term maxθ∈[0,t] g(y
α
x (θ))

plays the role of a penalization that a trajectory yux would pay if it violates the state constraints. We
will see in Theorem 3.2 that the advantage of considering (14) is that ϑ can now be characterized as the
unique continuous solution of an HJB equation.

Theorem 3.1 (characterization of the capture basin). Assume (H1)–(H2). Let ϑ0 and g be Lipschitz
continuous functions defined, respectively, by (11) and (13). Let u and ϑ be the value functions defined,
respectively, by (12) and (14). Then, for every t ≥ 0, we have the following:

(i) The capture basin is given by

capt(t) = {x, u(x, t) ≤ 0} = {x, ϑ(x, t) ≤ 0}.

(ii) If ϑ(x, t) < 0 and
◦

K= {x, g(x) < 0}, then u(x, t) < 0, and there exists, on [0, t], an admissible
trajectory yα that never touches the boundary ∂K.

Proposition 3.1. Assume (H1)–(H2). The minimal time function T : R
d 7−→ R

+ ∪{+∞} is lsc.
Moreover, we have

T (x) == inf{t ≥ 0, ϑ(x, t) ≤ 0},

with ϑ the value function defined in (14), where ϑ0 and g are any Lipschitz functions satisfying, respec-
tively, (11) and (13).
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Remarque 3.1. It is known that when (H2) does not hold, the lower semicontinuity of T is no longer
true. In this case, it is possible to prove that T∗(x) = inf{t ≥ 0, ϑ(x, t) ≤ 0}, where T∗ is the lsc envelope
of T .

Remarque 3.2. The use of a level-set approach is a standard way to determine the minimal time function
of unconstrained control problems [?].

In our work, we generalize this point of view to the case when the time control problem is in the
presence of state constraints. Our formulation also allows us to obtain the capture basins.

As mentioned before, the function ϑ can be characterized as the unique solution of a Hamilton–Jacobi
equation. More precisely, considering the Hamiltonian

H(x, p) := max
α∈A

(
− f(x, α) · p

)
, (15)

we have the following.

Theorem 3.2. Assume (H1) and that ϑ0 and g are Lipschitz continuous. Then ϑ is the unique continuous
viscosity solution of the variational inequality (obstacle problem)

min(∂tϑ+H(x,∇ϑ), ϑ− g(x)) = 0, t > 0, x ∈ R
d, (16a)

ϑ(x, 0) = max(ϑ0(x), g(x)), x ∈ R
d. (16b)

Inequalities such as (16) appear also in the framework of exit time problems, where the obstacle g
represents the exit cost that should be paid. Here, g is a “fictitious cost” that a trajectory would pay if
it leaves K.

Let us also point out that the obstacle term in (16) comes from the presence of the sup-norm
maxθ∈[0,t] g(y

u
x(θ)) in the cost function which defined ϑ (see (14)). We refer to the works of Barron

and Ishii [?] and the references therein for optimal control problems with sup-norm cost functions.

3.2 Numerical approximation of ϑ

Although equation (16) is set in the whole space R+×R
d, with d = 6, in order to perform computations a

finite domain [0, T ]×B is used, where T is an upper bound of the needed time to reach the target (which
can be increased if needed) and B is chosen as a d-dimensional box containing the target and the initial
point of the optimal trajectory. Hence the HJB equation (16) is discretized on [0, T ] × B. For this we
choose a uniform space grid G = {xi} on B, with mesh steps (∆xj)j=1,...,6. For each time tn and at each
node point xi ∈ G, the value V n

i denotes an approximation of ϑ(tn, xi). Then the discrete approximation
of (16) is given by:

min

(
V n+1
i − V n

i

∆t
+Hnum

(
tn, xi, p

n
i,−, p

n
i,+

)
, V n+1

i − g(xi)

)

xi ∈ G, n ≥ 0, (17a)

V 0
i = max(Φ(xi), g(xi)), xi ∈ G, (17b)

where Hnum remains to be defined and pni,± are gradient approximations that will depend of the values
(V n

k ) and that will be also defined below. Because it will be choosen ∆t > 0, it is easy to see that (17a)
is equivalent to

V n+1
i = max

(

V n
i −∆tHnum

(
tn, xi, p

n
i,−, p

n
i,+

)
, g(xi)

)

, xi ∈ G, n ≥ 0.

(therefore V n+1
i is an explicit expression in terms of the values (V n

k ).)
In order to define Hnum we follow the ENO approach for Hamilton-Jacobi equations as in [?] in order

to obtain a consistent approximation of (16), first order in time (Euler forward) and second order in
space. First a monotone Lax-Friedriech hamiltonian is considered:

Hnum(t, x, p−, p+) := H(t, x,
p− + p+

2
)−

d∑

j=1

Cj

2
(p+j − p−j).
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with p± := (p±1, . . . , p±d). Furthermore, an analytic expression for the Hamiltonian H can be performed
(see below).

For each j = 1, . . . , d, the constant Cj > 0 is chosen to be an upper bound of maxt∈[0,T ], x∈B, p |
∂H
∂pj

(t, x, p)|,

which, in our case, turns out to be an upper bound for maxt∈[0,T ], x∈B, u∈U |Fj(t, x, u)|.

For a given i = (i1, . . . , id), let ej ∈ Rd be the unit vector such that (ej)k = δjk (∀k), and therefore

i± ej := (i1, . . . , ij−1, ij ± 1, ij+1, . . . , id).

At given time step tn, we define

DV n
i,±j := ±

V n
i±ej

− V n
i

∆xj
, D2V n

i,j :=
V n
i+ej

− 2V n
i + V n

i−ej

∆x2j
.

and

pni,±j := DV n
i,±j ∓

1

2
∆xj minmod

(

D2V n
i∓ej

, D2V n
i

)

where the minmod function is defined here by minmod(a, b) := a if (ab > 0 and |a| ≤ |b|), minmod(a, b) :=
b if (ab > 0 and |b| ≤ |a|), and minmod(a, b) = 0 otherwise.

The time step ∆t > 0 is chosen constant for simplicity, and for stability reasons it is assumed to
satisfy the following CFL condition:

∆t

d∑

j=1

Cj

∆xj
≤

1

2
.

Optimal trajectory reconstruction procedure. Once the function ϑ is computed everywhere,
the minimal time function is computed as

T (xi) := inf

{

tn, tn ≥ 0, ϑ(tn, xi)

}

.

It is then possible to reconstruct the optimal feedback control law and the corresponding optimal trajec-
tory (see for instance [19, Appendix A]). In all the tests performed in the next section, the reconstruction
of the optimal trajectory is done by using a classical second-order Runge-Kutta scheme.

3.3 Analytic expression of the hamiltonian

The hamiltonian H(x, p) calculation leads to the evaluation for a given x ∈ R
6 and p ∈ R

6 of the following
maximum:

M = max
α,δ

(

q1 cos(α) cos(δ) + q2 sin(α) + q3 cos(α) sin(δ)

)

where
q1 = −p2, q2 = −p3/v, q3 = p4/(v cos γ)

and α ∈ [αmin, αmax] , δ ∈ [δmin, δmax].
Let denote

q4 =
√

q21 + q23 , ζ = arctan(q3/q1) ∈ [−π, π]

Let us introduce the functions

A(α, δ) = q4 cos(α) cos(δ − ζ) + q2 sinα

and
B(α) = max

δ∈[δmin,δmax]
A(α, δ) = max

δ
(q4 cos(α) cos(δ − ζ) + q2 sinα)

13



On can remark that

B(α) = q4 cos(α) · [ max
δ∈[δmin,δmax]

cos(δ − ζ)] + q2 sinα

Denoting
δ∗ = arg max

δ∈[δmin,δmax]
cos(δ − ζ) (18)

one can see that δ∗ does not depend on α and that

B(α) = q4 cos(α) cos(δ
∗ − ζ) + q2 sinα

Let denote

ψ = arctan

(
q2

q4 cos(δ∗ − ζ)

)

∈ [−π, π]

and q5 =
√

q22 + (q4 cos(δ∗ − ζ))2. Then one has

B(α) = q5 cos(α− ψ)

The maximum value M is then equal to

M = max
α,δ

(

q1 cos(α) cos(δ)+q2 sin(α)+q3 cos(α) sin(δ)

)

= max
α∈[αmin,αmax]

B(α) = max
α∈[αmin,αmax]

cos(α−ψ).

One car write it as follows
M = A (α∗, δ∗)

where
α∗ = arg max

α∈[αmin,αmax]
B(α) (19)

Let us remark that the computation of δ∗ dans (18) and α∗ dans (19) leads to the same problem: find
the maximum of the function cos(φ) on an interval [φ1, φ2]. In the case of δ∗ one has

[φ1, φ2] = [δmin − ζ, δmax − ζ], −
π

4
< δmin < 0 < δmax <

π

4
, −π ≤ ζ ≤ π

and for the computation of α∗ :

[φ1, φ2] = [αmin − ψ, αmax − ψ], −
π

2
< αmin < 0 < αmax <

π

2
, −π ≤ ψ ≤ π

One can see then that if [φ1, φ2] ⊂ [−π, π]

φ∗ = arg max
φ∈[φ1,φ2]

cos(φ) = Proj (0, [φ1, φ2])

where
Proj (0, [φ1, φ2]) = min(φ2,max(φ1, 0))

is the projection of 0 onto the interval [φ1, φ2]. Indeed, if 0 ∈ [φ1, φ2] then φ
∗ = 0, and if 0 < φ1 < φ2 then

cos(φ) is decreasing and φ∗ = φ1 = Proj (0, [φ1, φ2]). Finally if φ1 < φ2 < 0 then cos(φ) is increasing and
then φ∗ = φ2 = Proj (0, [φ1, φ2]). The last case we have to consider is when π ∈ [φ1, φ2] or −π ∈ [φ1, φ2].
In both cases the maximum point is one of two endpoints of the interval.

Finally one can resume the optimal point as follows

φ∗ =







Proj (0, [φ1, φ2]) , si
φ1 + φ2

2
∈ [−π, π]

φ2, si
φ1 + φ2

2
> π

φ1, si
φ1 + φ2

2
< −π

(20)
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4 Numerical simulations

4.1 Numerical data used for the simulations

We give int this section the list of principal numerical data describing the dynamical properties of the
launcher and the the atmospheric model used for all presented computations. These data was provided
by CNES.
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Figure 5: Speed velocity (in red) and air density

Notation Value Units Comments

Cx aerodynamic coefficients
FT see figures 5 and 6 thrust force
MEAP 2× 37× 103 kg mass of boosters without propellant ()
ME1 18× 103 kg mass of first stage without propellant ()
ME2 7× 103 kg mass of second stage without propellant
MC 2500 kg mass of cap
MP,EAP 2× 237000.0 kg mass of propellant in boosters
MP,E1 170 000.0 kg mass of propellant in first stage
MP,E2 24 500.0 kg mass of propellant in second stage
MPL = mass of the payload
rT 6378× 103 m Earth’s mean radius
Sr 23 m2 reference surface
SEAP 2× 7.0 m2 exit nozzle area of boosters
SE1 4.0 m2 exit nozzle area of first stage
SE2 0 m2 exit nozzle area of second stage
βEAP see figure ?? kg s−1 flow rate for boosters
βE1 see figure ?? kg s−1 flow rate for first stage
ISPE2 465 flow rate for second stage
βE2 40 kg s−1 flow rate for second stage
µ 0.3986020E+15 m3 s−2 Earth’s gravitational constant
ρ see figure 5 atmospheric density
Ω 0.7292115E-04 rad/s Earth’s angular velocity

The figures 5 and 6 represent the air density model and the trust and drag data for the launcher.
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Figure 6: Trust data for boosters (red) and the first stage (blue) and the drag coefficient (green)

4.2 Computational domain and adaptive grid refinement

Let us point out that physical reasons allow us to restrict the computational domain, thus decreasing the
CPU time. For instance, the region of small altitude with high velocity is clearly not interesting. Here,
we shall consider local computation on the subdomain K1 of points (r, l, v, γ, χ) such that

(r, l, v, γ, χ) ∈ B, fmin(r) < v < fmax(r), (21)

with

fmin(r) := max (max((r − b1)/a1, (r − b2)/a2),min(500.0, (r − b3)/a3)) ,

fmax(r) := (r − b4)/a4,

and with constants given by:

a1 = 33.330, b1 = 6544700; a2 = 95.000, b2 = 6388000;
a3 = 52.000, b3 = 6379000; a4 = 14.285, b4 = 6370900.

By restricting the effective calculation in the domain K we reduce the CPU time. To reduce the
computations on a given domaine K we introduce an artificial obstacle :the complementary set of K. See
[24, 25] for more details about HJB approach to constraint optimal control problems.

In this study we will introduce also an adaptive refining technic. First, we solve the HJB equations
on a coarse grid with the domain restriction for the state variables r and v as described below. After
computing all the trajectories we determine numerically a subdomain K2 of points (r, l, v, γ, χ) such that

(r, l, v, γ, χ) ∈ K1, Gmin(r, v) < γ < Gmax(r, v) (22)

where Gmin(r, v) and Gmax(r, v) are empirically computed affine functions of variables (r, v) defining a
large enough domain around all computed trajectories. Then we can refine the state space grid and solve
the HJB equation by reducing the computation domaine on K2. The test 2 described later shows that
this approach allows us to get more computation precision without increasing too mush the CPU time.
For this study we have used the following expressions for the functions Gmin and Gmax:

Gmin(r, v) = max(γmin, (r − a6,1 · v − a6,2)/b6); Gmin(r, v) = max(0.15, (r − a7,1 · v − a7,2)/b7);

with the following coefficients:

a6,1 = −26.6666667 a6,2 = −266666.6666667 b6 = 6538135.0
a7,1 = −29.999750 a7,1 = −399996.666667 b7 = 6718132.833333
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Figure 7: The set of all atmospheric trajectories corresponding to the discret set of initial parameters

4.3 Computation of the set X0 of initial positions for the optimal control

problem

As explained in the section 3 to solve the global optimization problem (8) we discretize the set I and
solve for each i ∈ I∆ the sub-problem (Pi) defined by (9). We apply this procedure in the Test 3 below.

For a fixed value of the parameter i ∈ I the optimisation problem (9) is defined for a set of initial
positions X0 that are all positions that can be reached from y0 with parameters p ∈ PIni. For numerical
solution of this problem we discretize also the set of initial parameters PIni. In all computations presented
below this set is fixed to be equal to

PIni = [ψmin, ψmax]× [θmin, θmax] = [−0.1326,−0.1292]× [0.0159, 0.0162]

Taking a uniform grid P δ
Ini = {(ψi, θj), i = 0, . . . , NI , j = 0, . . . , NI} of NI ×NI points on this set we

define the discret set

X∆
0 = {ypx(t1) | p ∈ P∆

Ini, ẏ
p
x(t) = f1(t, y

p
x(t), p), y

p
x(0) = y0}.

The figure 7 shows the set of all governed by the dynamics f1(t, x, p) for t ∈ (0, t1) corresponding to
all values of the discret parameters set P δ

Ini.

4.4 Description of tests

4.4.1 Computation models comparison

In this study the motion equations used for the HJB equation and for the trajectory reconstruction are
modeled in spherical coordinates (see section 2). This approach allows us to reduce the dimension of the
system to 5 by isolating the equation for the longitude L (the second one in the system (2) ). However,
the reference trajectory to which we will compare some of our results, was calculated using the motion
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Figure 8: Control lows α(t) and δ(t) corresponding to the reference trajectory
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Figure 9: Reference trajectory (in black) and computed trajectory (red)

equations in cartesian coordinate system, corresponding to the quasi inertial equatorial frame RI . Let
us first compare the computational model used in this study with the reference one. In particular, let fix
the initial condition parameters and the control lows α(t) and δ(t) to those used by CNES to compute
the reference trajectory.

The figure 8 shows the controls lows α(t) and δ(t) obtained by a change of variables from the reference
ones θ and ψ defining the thrust force vector direction in the local inertial frame. The angles α and δ are
the angles of the same thrust force vector in the dynamic frame RD. The figure 9 shows the trajectory
obtained by solving the motion equations (2) ) in spherical coordinated with the control lows α and δ as
in figure 8.

One can observe some difference in the obtained trajectory with respect to the reference one (in black
on the figure 9, in spherical coordinates). This can be explained by several minor approximations were
admitted to the study. In particular, the gravitation model used for the computations is reduced to a
first order approximation. The atmospheric data were also simplified for the purposes of this study.
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4.4.2 Tests for the HJB approach

Test 1. Our goal for this test is to validate the quality of the trajectories obtained with the HJB
approach. We compare our trajectories with a reference data, obtained by CNES. We observe also
l’evolution of the computation performances when the number of grid points grows.

This test is realized under the following hypothesis:

• The set of injection points is reduced to a segment of a single GTO orbit, corresponding to the
orbit parameters of the reference trajectory. The only orbit parameter is the true anomaly θ.

• The initial condition parameters, azimut ψ and the angular speed ωbasc) are varying in some neigh-
borhoods of the values fixed for the reference trajectory.

The initial parameters are discretized, as explained in the previous section. We test here two different
grids of initial parameters: P 1

Ini with NI = 5 and P 2
Ini with NI = 9 such that P 1

Ini ⊂ P 2
Ini. For each grid

of initial parameters we select two particular trajectories. The first one, y∗(t) is the optimal trajectory
which is the approximation of the solution of the problem (9). The second one yr(t) is the trajectory
obtained as solution of the particular optimal control problem 6 with the same values of initial parameters
as for the CNES reference trajectory.
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Figure 10: Test1. Optimal trajectory (red) and trajectory with reference initial parameters (blue)

The figure 10 shows the time optimal trajectory : y∗(t) in red obtained using the finest grid 60×15×
60×45×15×5. It is compared to the reference trajectory computed by CNES (black line). The figure ??
shows the optimal control lows.

The table 1 resumes the optimal shooting parameters and the CPU time as functions of the size of
the state space grid and the initial parameters grid.
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grid
Azimut
ψ in deg.

Angular speed
w, deg./s

CPU
in s

P 2
Ini P 1

Ini P 2
Ini P 1

Ini

20×5×20×15×5×5 -0.129 -0.129 0.01518 0.01518 43
40×10×40×30×10×5 -0.130 -0.130 0.01693 0.01606 1889
60×15×60×45×15×5 -0.130 -0.130 0.01693 0.01780 36239

Reference trajectory
of CNES

-0.1309 0.01606 NA

Table 1: (Test 1) Comparison of optimal initial parameters

The table 2 resumes the properties of the optimal trajectories obtained with different state space grid
and the initial parameters grids.

grid tf on GTO Distance to GTO (m)
MP,E2(tf,GEO)

kg
P 2
Ini P 1

Ini P 2
Ini P 1

Ini P 2
Ini P 1

Ini

20×5×20×15×5×5 966.913 966.913 2570.452 504.843 1780.911 1780.911
40×10×40×30×10×5 993.753 994.203 510.122 509.372 1009.587 996.655
60×15×60×45×15×5 1004.563 1005.263 390.026 389.935 698.930 678.814

Reference trajectory
of CNES

19746 4754 0

Table 2: (Test 1) Comparison of optimal trajectories parameters for different grids

The next table compares the performances of ergol consumtions.

grid
MP,E2(tf )

(on GTO) (kg)
△MP,E2(tf , i)

kg
MP,E2(tf,GEO)

kg
y∗(t) yr(t) y∗(t) yr(t) y∗(t) yr(t)

20×5×20×15×5×5 17198.160 17231.360 5520.929 5511.581 1780.911 1757.059
40×10×40×30×10×5 18271.760 18411.360 5218.653 5179.349 1009.587 909.291
60×15×60×45×15×5 18704.160 18794.960 5096.910 5071.345 698.930 633.695

Reference trajectory
of CNES

19746 4754 0

Table 3: (Test 1) Comparison of boost consumption for optimal and reference initial parameters

Test 2. In this test we introduce a new domain reduction method for tree state variables (r, v, γ),
as described below. We use the same hypothesis as in the test 1. The only difference is the domain of
computation. Then we measure the gain of the CPU time obtained with the new domain as function of
the size of the grid. The table 4 shows the evolution of the CPU time for two reduction methods when the
size of the grid grows. The last column of this table shows the dostance between the sets of trajectories
computed with two different computational domains.
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grid CPU time
r − v reduction

CPU time
r − v − γ reduction

Mass gain
r − v reduction

Mass gain
r − v − γ reduction

20×5×20×15×5×5 43 32 1967.133 1853.62
40×10×40×30×10×5 1889 1432 1038.324 1005.28
60×15×60×45×15×5 18631 14645 727.955 755.256
75×20×75×60×20×5 - 79725 - 464.716

Table 4: (Test 2) comparison of two different computation domains

Test 3. In this test we use a set of injection points defined by tree varying orbit parameters: ω, i and
θ. The goal of this test is to check if this more large injection set allows to find better solutions in terms
of mass partition. All computations for this tests was realized with the grid 60×15×60×50×15×5. The
next table shows the optimal solution parameters as function of the inclination i of the GTO orbit.

Inclination, i, in deg Azimut
ψ in deg.

Angular speed
w, deg./s

Final time
tf , en s

mass gain
en s

4 -0.1292 0.0161 1018.1 370.63
5 -0.1292 0.0152 1008.9 624.6455
6 -0.1309 0.0169 1015.7 413.973
7 -0.1309 0.0143 1015.2 410.316
8 -0.1309 0.0161 1015.0 393.062
7 -0.1309 0.0143 1015.7 350.277

Traj. de référence CNES -0.131 0.0160 1031 NA

Table 5: (Test 3) Optimal parameters as functions of the GTO inclination
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Figure 11: Optimal trajectory
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Figure 12: GEO and GTO orbits

A Definition of orbital parameters

For the phase 3 of the flight sequence there are two kinds of orbital maneuvers:

• Injection on a GTO orbit

• Orbital transfert from GTO to the GEO.

We define here all necessary parameters to describe these maneuvers.

A.1 GTO injection parameters

A GTO orbit is represented on the figure A.1. We denote A and P the perigee and apogee centers of the
orbit respectively. The line of nodes is the line of intersection of the orbital plane with the equatorial
plane of the Earth. It’s extremal points are respectively ascending (NA) and descending (ND) nodes
of the orbit. A GTO orbit can be fully defined with the following set of parameters (ra, rp,ΩGTO, ω, i),
where:

• ra and rp are respectively the distances from the center of the Earth of the perigee and the apogee
of the orbit

• ΩGTO is the right ascension of the ascending node.

• ω is the polar position of the perigee P , measured positively from the ascending node NA.

• i is the inclination of the orbital plane with repect to the equatorial plane of the Earth.

On can deduce from these parameters the semimajor axis

a =
ra + rp

2
(23)

and the eccentricity

e =
ra − rp
ra + rp

(24)

A point Q on the orbit is defined by it’s angular position η, called true anomaly (see figure A.1). Let
µ = 3.986013 · 1014 m3/s2 be the central attraction term of the Earth. Given orbital parameters defined
below and the true anomaly of a point Q on the orbit, one can deduce the corresponding orbit radius
rQ(η) and orbit velocity vQ(η) as follows:

rQ(η) =
rarp

ra(1 + cos(η)) + rp(1− cos(η))
(25)
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vQ(η) =

√

µ

a

1 + e2 + 2e cos(η)

1− e2
(26)

In this study we consider a family of GTOs with a fixed perigee altitude r0p and that intersect a given
GEO. Recall that a GEO is a circular orbit in the equatorial plane of the Earth. It is fully defined by
the data of its radius rGEO. If a GTO intersects a GEO of a give radius rGEO this fixes the orbit radius
of it’s ascending node NA. Note that by definition (see figure A.1)) the true anomaly of the point NA
is −ω. Then we have the following condition:

rNA = rQ(−ω) = rGEO

from which we deduce the apogee altitude:

ra =
rGEO · rp(1− cos(ω))

2rp − rGEO(1 + cos(ω))

So, if we fix the perigee altitude rp and the GEO radius rGEO the parameter ra is also fixed. Then
the set of considered GTO orbits is defined by two varying parameters : inclination i ∈ [imin, imax] and
the perigee orientation ω ∈ [ωmin, ωmax]. For each GTO orbit we define a segment of injection as a
neighborhood of the perigee : η ∈ [ω −∆η, ω +∆η with a given ∆η > 0.

A.2 Orbital transfer parameters

In our study, we assume that the GTO- GEO orbital transfer is performed through an impulse boost (to
change the velocity’s modulus and direction). The amount of propellant required for the orbital transfer

is determined by the choice of the GTO via Tsiolkovski formula. Let
−→
V GTO be the speed at the ascending

node of the GTO, and ~VGEO be the desired GEO speed. Then the differential gear to provide the vehicle
is the vector difference:

∆~V = ~VGEO − ~VGTO

with the modulus:

∆V =
√

V 2
GEO + V 2

GTO − 2V 2
GTOV

2
GEO cos(i) (27)

.
Note that the speed VGTO can be expressed using (26) for the ascending node:

VGTO = vNA = vQ(−ω)

The formula Tsiolkovski connects the differential speed to provide the required fuel mass

∆V = g · Isp · ln

(
minit

mfinal

)

(28)

where minit and mfinal are respectively the launcher’s masses before and after the operation. Thus
one can calculate the weight of propellant required to the GTO-GEO orbital transfer in a single impulse,
knowing the speed at the height of the GTO and its inclination with respect to the GEO.
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