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1 Introduction and notations

These lecture notes are related to the CtSMurse on "Modal Analysis of nonlinear Mechanical sys-
tems”, held at Udine, Italy, from June 25 to 29, 2012. The layoept at the core of all the lessons given
during this week is the notion of Nonlinear Normal Mode (NNM)theoretical tool allowing one to
extend, through some well-chosen assumptions and limitstithe linear modes of vibratory systems, to
nonlinear regimes. More precisely concerning these ntiteg,are intended to show the explicit link be-
tween Normal Form theory and NNMs, for the specific case afatdyy systems displaying polynomial
type nonlinearities. After a brief introduction reviewitttge main concepts for deriving the normal form
for a given dynamical system, the relationship between abfarm theory and nonlinear normal modes
(NNMs) will be the core of the developments. Once the mainltegpresented, application of NNMs
to vibration problem where geometric nonlinearity is preswvill be highlighted. In particular, the de-
velopments of reduced-order models based on NNMs expressadptotically with the formalism of
real normal form, will be deeply presented. Applications devoted to thin structures vibrating at large
amplitudes, with a special emphasis on thin shells of difiegeometry (from plates to closed circular
cylindrical shells). Effective reduced-order models floe prediction of the type of nonlinearity (hard-
ening/softening behaviour), or the computation of congplfurcation diagrams for the case of forced
vibrations, will be shown, for toy models including a smalinber of degrees-of-freedom (typicaly two
to three dofs), as well as for continuous models such as hgdatss and shells.

The following notations will be used throughout the lectnotes. For generic (nonlinear) dynamical
systems X will denote the state vectaK € &, wheref is the phase space, of dimensionGenerally,
the simple choic& = R" is retained. The dynamical system is denoted as:

X = F(X), 1)
with F the vector field, which could depend on one or more parameters

For the particular case of vibratory system, geometricineatity is considered, so that only quadratic
and cubic type nonlinearities are present in the equatibmeotons. Hence for nonlinear vibration prob-
lems, the generic equations of motion consist in a s&f okcillator equations, denoted under the general
formulation:

N N N N N
Vp=1...N: X,4+wlX,+> Y @XiX;+ > > D> hl XXX =0, 2)
i=1 j>i i=1 j>i k>j

wheregfj denotes the generic quadratic nonlinear coupling coerﬁlipa'mdhfjk the cubic one. In this no-
tation, the upperscripi refers to the oscillator-equation considered, while tHesstipts(s, j, k) denotes
the coupling monomX; X; X;.. Note that damping is not considered in Eq. (2). Inclusiodis$ipative
mechanism will be included in some parts of the notes. Nate thlat the linear part is diagonal, which
means that the variabl¥, is the modal amplitude of theﬂblinear normal mode. In cases where the
linear part is not given as diagonal, a linear change of doatd can be performed to fit the framework
presented here. Finally, to recover the first-order dynahsggstem formalism, the velocity, = Xp

is used as complementary variable, so that, for a colleaifoN oscillators, the state variable writes:
X = [Xl Y1 Xo Yy ... XN Yy ], so that dlnﬁé’) =2N.

The first section is devoted to normal form theory. The magaidf introducing a nonlinear transform
in order to simplify as much as possible the equations of onotis first introduced in an illustrative

1CISM stands for "Centre International des Sciences Mé&gas” (in French), or "International Centre for Mechanical
Sciences”, see www.cism.it



manner where the reverse problematic is considered. iaplsiexamples in dimension 1 and 2 allows
introducing the key concept of resonance. The core of thayhthe theorems of Poincaré and Poincaré-
Dulac, are then given in a general context, and the resulies specialized to the case of vibratory
problems. The main results are given for a conservativelpnopband the link to NNMs, is illustrated,
allowing derivation of important ideas such as reducecarordodeling and classification of nonlinear
terms for physical interpretation. Finally, the case of gachmechanical systems is tackled.

The second section focus on the prediction of the type ofineatity (hardening/softening be-
haviour) for a system of oscillator of the form (2). It is shothat NNMs and normal form gives the
correct framework for an efficient and accurate predictiExamples on two-dofs system, and spherical-
cap shells with varying radius of curvature (from the flatt@lease to spherical shells), illustrates the
method. Finally the influence of the damping on the type ofinearity is discussed.

The third section tackles the problem of deriving accuratiticed-order models (ROMs) for thins
structures harmonically excited at resonance, in the #yoaf one of its eigenfrequency, and vibrating at
large amplitudes. NNMs and normal form are used to derivé&tbdls, and examples on different shells
are shown: a doubly-curved (hyperbolic paraboloid) pahgtrates a case without internal resonance,
while a closed circular cylindrical shell allows illustiray a more complicated case with a 1:1 internal
resonance. the complete bifurcation diagram with diffekémd of bifurcation points are clearly recov-
ered by the ROM, and a comparison with the most routinely Ueger Orthogonal Decomposition
method (POD) is shown to conclude the notes.

2 Normal form theory

Normal form theory is a classical tool in the analysis of dyial systems, and general introductions
can be found in many textbooks, se@. [20, 21, 57, 29]. It is generally used in bifurcation theomny i
order to define the simplest form of dynamical systems géngralassical bifurcations of increasing
co-dimension. Here however, the general theory will be dsednother purpose: defining a nonlinear
change of coordinates allowing one to express the dynamies iinvariant-based span of the phase
space, where the (curved) generating axis are the invarianifolds arising from the linear eigenspaces,
i.e. the NNMs of the system.

Normal form theory is based on two major theorems, due todaogand Poincaré-Dulac, which
have been demonstrated in the beginning of thé”™¢entury [39, 13]. The main idea is to simplify,
as far as possible, the equations of motion of a nonlineaamtycal systems, by means of nonlinear
change of coordinates. The presentation will begin withvanse problematic, in order to understand
better the main issue: starting from a simple, linear problee will show how a nonlinear change of
coordinate can make it appear as complicated. Then the héwmawill be introduced gradually with
two examples study, starting from the simplest cases witiedsion 1 and 2. The "reverse” illustrative
problematic is borrowed from [30], and the presentationarfmal form used follows closely that shown
in [30, 29].

2.1 Problematic

Before entering the complicated calculations for tacklimg general case, let us first introduce an illus-
trative example, allowing us to properly define the goal peds which is defined as trying ®mplify
as far as possiblein the vicinity of a particular solutione(g. fixed point or periodic orbit), a given
dynamical system.

To begin with, let us consider the simple initial-value desb:

d’y

4y =

a2 + 0, (3a)
day



whereY is a real coordinate depending on tirhe This equation is that of a single oscillator, with
eigenfrequency equal to one. Its solution in time is knowah Erads:

Y (t) = Yy cost. 4)
Now let us introduce the transformed variable:
X =exp(Y) - 1L (5)

Differentiating Eqg. (5) two times with respect to timeand inserting in the original dynamical equation
(3a), one can show that the transformed variablsatisfy the following evolution equation:

1+ X)X - X*+ (1+X)*In(1 + X) =0, (6)

whereln is the natural logarithm. In the case where one would havad® & physical problem expressed
by Eq. (6), with appropriate initial conditions, then théwimn would have been more difficult to find !
Maybe that with a great intuition and a bit of luck, one coutvér find the solution which, in our case, is
known by construction, and is simply given by:

X(t) = exp(Ypcost) — 1. (7

@ ? | | | (b)

FFT(X)

0 1‘0 26 3‘0 40 0 2 4 6 8 10
t Frequency
Figure 1. (a) Time series of the transformed variakldblack solid line), compared to the origin&l

(thin blue line), for the problem defined through Egs (3)-({#): Fourier Transform o (black solid
line) andY (thin blue line), showing their harmonic content.

The solution forX is represented in Fig. 1. As awaited, it ig-periodic, but contrary to the
initial solution for Y displaying only one harmonic component, tResolution shows an infinity of
harmonics, with exponential decay in amplitude, as reekehlethe Fourier transform ok, Fig. 1(b).
This example shows that the apparent complexity of the proldor X only results from a nonlinear
change of coordinates. Looking at the things in a reversenerathe question arising is naturally: for a
given problem, is it possible to find such a nonlinear tramsédion that could simplify, at best linearise,
the initial system ? The main idea of normal form theory isit@@n answer to this question. Without
inspired intuition, one could at least try an asymptotioyposeries expansion, in order to get an idea
of the sought nonlinear change of coordinates. This funatioelationship has to be defined in the
vicinity of Y = 0 (or equivalently,X = 0), which is the fixed point of the original dynamical system
(equivalently, of the transformed system). Once againdhalt is known and reads, in our case:

+oo 1
X=> Y (8)
n=1



Note thatX ~ Y for X,Y small, which means that the transformation is identitygtam, and aims at
conserving the linear characteristic of the original systdn a general case where the solution is not
known, one would like to find iteratively, order by order, thenlinear transformation.

Let us close these introductory remarks by precising whatdéant by "as far as possible”, in the
definition of the nonlinear transform. Consider the genesalamical systemX = F(X), where
F(X) = X + XP, in the vicintiy of the fixed pointX = 0. The common sense would state that
this problem withp= 6 is "more nonlinear” than the same wiphkk2. However, as shown in Fig. 2, the
linear approximatiorf’(X) ~ X is valid on a larger range of X-amplitudes for6 than forp=2. Hence
the dynamical system witR(X) = X + X is "less nonlinear” than the one withi(X) = X + X2, be-
cause the nonlinearities are activated for larger valugssodmplitudeX, and one could give confidence
to a linear approximation on a larger range of amplitudes.

2
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Figure 2: Representation éf(X) = X + X? for p=2, 4, 6, as compared to the linear case.

Finally, the goal can now be stated properly: for a given dyical system, in the vicinity of a
particular solution (typically a fixed point), we would like find out nonlinear transformations that aims
at extending the validity range of the linear approximatimncancelling a maximum number of monoms
of increasing orders, in the power series expansion of tetowdield. The next subsection introduces
the normal form transform for simple problems where the ptgmace have dimension 1 and 2, before
generalizing the results for any dimension and any dyndmicaem.

2.2 Example study

2.2.1 The problem in dimensionn = 1

Let us consider a dynamical system:

X:sX+a2X2—|—a3X3—|—...:sX—i—Zapo, (9)
p>1

where X € R (phase space of dimensiarrl). X=0 is a hyperbolic fixed point as long as* 0,
otherwise a marginal case is at hand (bifurcation point).
Let us introduce a nonlinear transform:

X =Y+ wY? (10)

whereas is introduced in order to cancel the quadratic monom of thgiral systemj.e. aoX? in Eq.
(9). HereY is the new variable, and the goal of the transformation ishimio a dynamical system for



the new unknowrY” that is simpler than the original one. Differentiating (1@h respect to time and
substituting in (9) gives:

(14 202Y)Y = sY + (sag + a2)Y? + O(Y?) (11)

All the calculation are realized in the vicinity of the fixedipt. HenceY” <« 1, so that one can mutliply
both sides by:

a-+2a2y)—1::§%(—2wogyp (12)
p=0
Rearranging the terms by increasing orders finally leads to:
Y =5sY + (ag — sap)Y2 + O(Y?) (13)
From that equation, it appears clearly that the quadratin tan be cancelled by selecting:
ay =2, (14)

S

which is possible as long as# 0. This condition has been assumed at the beginning (hypeitigol
of the fixed point). Hence with that choice, the objectiveuliifed, the nonlinearity has been repelled
to order three. The only condition appearing is that of higpkeity, which means that we are not at
a (singular) bifurcation point. The process can be continfuether, let us examine what happens for
the third order. First, one has to write the resulting dyr@ainsystem forY”, by expliciting the third-
order term, which has been modified after the first transfdrat has cancelled the quadratic monom.
Substituting for (10) in (9), with the retained choieg = as/s, leads to:

Y =sY +asY?+0OY*), where as=as+2a3/s (15)
A cubic transform is now introduced in order to simplify (15)

Y =Z +a3Z?, (16)
Repeating the same procedure leads to:

Z = sZ 4 (a3 — 2sa3)Y> + O(Y?), 17)

which shows that the cubic term can be cancelled by selecting
— 6'3

=50

Once again, the only condition appearing in the calculatdhe one already found,# 0. The complete
change of coordinate can be written up to third order by gatbeogether Eqgs. (10) and (16):

(18)

a3

X:Z+@T+§T+QTL (19)
S S
and the resulting dynamical system for the knew unkn&nmow reads:

Z =sZ + a2+ O(Z°), (20)

wherea4 has to be computed properly by replacing (10) in (9) and cHyeselecting fourth-order terms.
This process is more and more difficult with increasing csdand rapidly suggest for helping oneself
with symbolic computation softwares. In any case we canloodecthat:

e The objective is fulfilled: nonlinearities have been repatllp to fourth order. The process can
be continued until complete linearisation of the problenhjol is possible as long as # 0
(hyperbolicity condition).

e The computed nonlinear transform becomes singular whenapneaches the marginality for
s —» 0, because they;’s scale asl/s. This is a reflection of the fact that the nonlinearities
dominates the dynamical behaviour in the vicinity of theutdhtion point; however the linearisa-
tion is still possible as long as one is away from that point.



2.2.2 The problem in dimensionn = 2

Before generalizing the result, the problem in a phase spfatienension 2 is now tackled. In dimensions
n > 2, resonance conditionappear, hence making the problem a little bit more com@tdghan what
could be expected from the precedent subsection, whereyfi@tholicity condition has been found to
be sufficient for simplifying the original system. _

We considerX = (X; X3)! € R2, and for simplicity the dynamical systedd = F(X) is
considered quadratic IK. We also assume that the linear part is diagonal and thatiheigenvalues
reads(si, s2). The system can be written explicitely as:

X1 = 51X1 4+ al1 X7 + alo X1 X + ady X3, (21a)
Xy = 59Xo + a3, X? + a2, X1 Xy + a2, X2 (21b)
The nonlinear transform is introduced:
X1 =Y1+anY{ + a1V + apYy, (22a)
Differentiating (22) with respect to time and replacing 2i) leads to:
(1—|—2(X%1Y1 + (X%QYQ)Yl + (04%2}/1 + 204%2Y2)Y2
= 51Y1 + (a1; + s1001) Y7 + (aly + s1015)Y1Y2 + (a5y + s1ady) Yy + O(YEQ) (23a)
(14—2@%2}/2 + (X%QY1)Y2 + (Q%QYQ + 204%1Y1)Y1
= 52Y2 + (af) + 5205))Y? + (afy + s2075)V1Ya + (a3, + $2055) Y5 + O(YEQ) (23b)

The calculation is pursued by noting that, at the lowest @ has:

Vi =81+ O(Yl%Q)v (24)
Yo = s2Yo + O(Y12,2)7 (25)

Hence the derivatives with respect to time involving a patda (23) can be replaced thanksSt’ij =
s;Y:Yj + O(Y},), so that finally one obtains:

Y1 = 51Y1+(al; — s104,) Y + (aly — s2019)Y1Y5

+ (aby + (51— 252)ay) Yy (26a)
Yy = s9Yo+(af; + (sa — 2s1)0d))Y{ + (a7, — s1035) 1Yo
+ (a39 — 5205,) Yy (26b)

In the previous equations, the unkonm{mﬁj} can be found by setting:

1 1 1
a a a
ajy = 4, ajg = =2, ay = —2—, (27a)
S1 59 282 — 51
2 2 2
a a a
04%1 =1 04%2 =12 04%2 == (27b)
281 — 59 S1 59

so that the complete cancellation of all the nonlinear tepmesent in the original equations (21) is
possible if and only if:

S1 75 0, 59 75 0, 59 75 281, S1 75 282. (28)

The first two conditions have already been encoutered inhesgent subsection in dimensian= 1:
once again, they are the consequence of the assumptioypefbolicity of the fixed point, stating that

7



we are not at a (marginal) bifurcation point. The last twoditans are new and result from extending
the dimension ta» = 2. They are called in the remaindexsonance conditigrand they reflect the fact
that the eigenvalues may share a commensurability refdtipn Hence they are completely different
from the hyperbolicity condition. When such a relationsbiists between the eigenvaluesg. when

s9 = 2s1, the analysis shows that the system can not be linearizede ptecisely, a monom, present
in the original equations, can not be cancelled becauseds@ant through the eigenvalue relationship,
and thus strongly couple the two equations. In the analffsisresulting normal form keeps the monom
and the dynamics is different from a linearizable case. Kanmple, in the case, = 2s; (assuming
s1, so # 0), the system can be simplified at best to:

Vi =s1Y3, (299)
YQ = 59Y5 + CL%1Y12. (29b)

The resonance condition can be understood in the followiagmar: from the first equation we have
Y1(t) x exp s1t. Reporting in the second equation, the nonlinear term mapsar a term proportional

to exp 251t = exp sot. Consequently the nonlinear term in (29b) may be interpgratea forcing term,
acting precisely at the resonance eigenvaluef the second equation. The solutions of this nonhomoge-
neous differential equation lead to secular terms, whigiagxs why the monom can not be cancelled.
These resonance conditions are further analyzed in sufnsectl, devoted to vibratory systems.

This subsection reveals the core of Poincaré and Poiizal@c theorems. When no resonance
condition exist between the eigenvalues, then the systequisalent to a linear one (Poincaré). In case
of resonance relationships, the system can be simplifietkthi@ successive nonlinear transforms. Only
the resonant monoms stay in the resulting so-call@unal formof the problem (Poincaré-Dulac).

2.3 General case; Poincar and Poincae-Dulac theorems

We are now in position to extend the result to a general cagigriansionn. Let us denote the dynamical
system as:

X = F(X) = LX + No(X) + ... + N,(X) (30)

whereX ¢ £ (€ = R" otherwise stated)L, the linear part, is assumed to be diagénalith L =
diag(s,), N,, denotes the terms at order
The generalization of the resonance condition reads, foremgrder of nonlinearity > 2:

s;i= misi, ni>0, Y ni=p. (31)
i i

Note that the cancellation of non-resonant monoms via neatitransformations, is realized sequen-
tially, order by order, so that the resonance condition appby increasing ordeys Forp=2, Eq. (31)
make appear the conditiors = 2s; encountered on the precedent example, as well as a caseimgyvol
three eigenvaluesi; = s; + sy, that can be found only when the dimension is suchthat3.

When no resonance condition of the form (31) exist betweerifpenvalues of the system, Poincaré
theorem states that a nonlinear transfon= Y + g(Y) exist, such that the dynamics for the new
coordinateY is linear and simply writesY = LY. This theorem has been extended by Dulac in 1917
to the case of the existence of resonance condition, stéfapycaré-Dulac theorem) that a nonlinear
transformX = Y + g(Y) exist such that the resulting system for the new varidbles still nonlinear
but drastically simplified as compared to the original, asittains only the resonant monoms that can

2The particular cases where the linear operator is not digligmtble are not treated here for the sake of brevity. Theabr
form theory applies in these cases as well, one has just tthaserdanrepresentation of the linear operator to obtain generic
cases, some examples can be found in classical textboae.gsf21, 30, 57].
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not be cancelled. In both cases, the simplified system f(Y) is called the normal form of the original
system. In the simplest case the normal form is a linear systethe other cases it contains only the
resonant monoms, resulting from the resonance conditietveeen the eigenvalues.

These theorems are very strong in the sense that they ura¢hié fact that, in the vicinity of a
particular solution, the eigenspectrum completely deigesithe nonlinear part. This means in particular
that, from the knowledge of the eigenvalues, one is able mstcact the normal form of the system by
deriving the resonant monoms. One must keep however in rhisdthe theory idocal only, and is
valid only in the vicinity of a particular solution. Finallyhe method for demonstrating the theorems is
a sequential calculations that treats by successive oadersnlinearity the monom,, appearing in
the dynamical system (30). This sequential calculationtmautomatized by using symbolic toolbox
softwares, nonetheless it becomes more and mode difficthitimdreasing orders. And it shows that the
method do not lend itself to a numerical treatment if one wdikle to find numerically the nonlinear
change of coordinates.

2.4 Application to vibratory systems, undamped case

The case of vibratory systems displaying quadratic anccaudmlinearities, is now examined, following
the general notation stated in the introduction, Eq. (2)pisent damping is not considered, in order to
introduce properly the concepts and the Nonlinear normalesoThe results are extended to dissipative
vibratory systems in subsection 2.8. In this subsectiom ptiesentation follows closely the theoretical
results published in [55].

The eigenvalues of a vibratory system are complex conjugite,, p=1, ...N. To compute the
normal form of Eq. (2), a first idea would be to follow strictlye general framework sketched in the
precedent subsection. This would mean to express Eg. (2) as:

X = F(X) = LX + Ny(X) + N3(X), (32)

where the linear parL is diagonal, and thus read$: = diag{+iw,}. For example, this framework
has been first used by Jézéquel and Lamarque [22] to exipoasthe nonlinear normal modes can be
introduced from the framework provided by normal form thedtowever a different choice is retained
here. The linear part will be retained as it is when the syssanritten at first-order by using the velocity
Y, = X,, as auxiliary variablei.e. a block-diagonal matrix, each block being written as:

0 1
33
(%) %)
This choice is done in order to avoid introducing complexrjiti@s in the calculations. It allows also
to have equations that will be of oscillator form at each stafjthe calculation, so that the auxiliary
variable can always be cancelled in order to recover osmillike equations beginning with + X + ...
This so-called real formulation allows simpler physicdknpretation of the different terms, as it will be
shown next.

A second point of interest is a consequence of the purely iimaag eigenspectrum. With regard to
the resonance relationships highlighted in the previobsettion, it appears that a complete linearization
is not possible in any case for a conservative vibratoryesystindeed, if only one oscillator equation
is considered, then one can always fulfill the following tielaship between the two complex conjugate
eigenvalueq+iw, —iw}:

+iw = +iw + iw — iw. (34)

i.e. arelationship of the form (31) with ordgr3. Coming back to the oscillator equation, this means
that the Duffing equation:

X +w’X +aX?=0, (35)



is under its normal form, the cubic term (monom associatél thie resonance relation (34)) can not be
cancelled through a nonlinear transform. On a physical pamt, this stands as a good news. Indeed,
one of the most important observed feature in nonlineaillasons is the frequency dependence upon
vibration amplitude. If the system could be linearizeds thibuld mean that the underlying dynamics is
linear, hence the frequency should not change with the &maleli Note that this frequency dependence
on amplitude is the main topic of section 3, and thus is deeplstigated there.
In the general case wheré oscillator-equations are considered, numerous resonatat@®nships

of the form:

+iwp = Fiwy, + Wk — Wy, (36)

are possible, for arbitrary, k € [1, N]?. This means that the original system (2) can be simplifiet], bu
numerous terms will remain at the end of the process, in tmmaloform, following Poincaré-Dulac
theorem. However, as it will be shown next, the game is wdrghctandle, as numerous important terms
will be cancelled, and also because the remaining termseaadily interpreted.

Before stating the main result, a last point must be undmilinThe resonance relationships put
forward through Eqgs (34)-(36) are denotedtradal : they exist whatever the values of the frequencies
of the studied structure are. A second family of resonankiosaships may arise frormternal reso-
nancesbetween the eigenfrequencies of the system. For exampler-two internal resonances reads,
for arbitrary (p, 7, j):

wp = w; +wj, wp = 2w, (37)
while third-order (linked to cubic nonlinear coupling teshwrites, for arbitrary(p, 7, j, k):
wp =w; +wj £wg, wp=2w; Twj, wp=3w;. (38)

Theseinternal resonancemay exist, or not, depending on the eigenfrequencies oftthetare. In the
remainder of the lecture, a clear distinction is thus madeéen trivial resonance relationships and
internal resonance. The main result is given for the caseeviteinternal resonancexist in the system.
The case of their presence is not problematic and is handlsghisection 2.5.

Let us give the general result. Considering a vibratingesyisof N oscillator-modes, written as
a first-order dynamical system by keeping oscillator-bfoak the linear part (real formulation), and
assuming no internal resonance between the eigenfre@sefugj},—;..n, a nonlinear transform can
be found in order to cancel the maximum number of quadraticcaic coupling terms present in the
original system. The nonlinear transform reads, up to cifttee:

N N
Xp: Rp + Z Z(QZRZRJ + b];JSzS])

i=1 j>i
! N N N N N N
+Y 3 N P RR R+ > > > ub RiS; Sy, (39a)
i=1 j>i k>j 1=1 g=1k>j
N N N N N N N N
Yo=Sp+ Y Y RS+ D> il SiSiSk+ > > Y vl SiR;Ry. (39b)
i=1 j=1 i=1 j>i k>j i=1 j=1k>j

In these equations, the new-defined variablgsand S,, are respectively homogeneous to a displace-
ment and a velocity. They are called thermal coordinates. The coefficients of this non-linear change
of variables(a;);, bsz ks Upps fyf}_, ﬂfjw yfjk) are given in Appendix A, as well as in [55]. the
complete proof leading to Egs. (39) is given in [49].
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The normal form is found by substituting for Eq. (39) in (2)daeads:

Vp=1,..,N:
R, =S, (40a)
Sp=— WP%RP (Appp + hgpp)R — Bppplty 52
N
2 2 2 2
- Ry |3 [ 4 R+ B3] [ A )R+ 7
I>p i<p
N
Z JPJR Sj+ ZBZpR Si| - (40b)
i>p 1<p
In these last equations, new coeffieiits’ ik ng) appear: they arise from the cancellation of the

guadratic terms, and write:

z]k - Zgzl ]k + Zglz ]k’ (413.)

1> 1<i
1
zgk Zgzl ikt Zgﬁbjk (41b)
>3 1<i

Equations (39)-(40) constitutes the main result for vilnasystems. The following comments are worth
mentionable:

e Even though the last Eq. (40) appears longer on the pagehbaniginal one (2), the reader must
be convinced that it is simpler. In particular, one can obsénat a nonlinear term of the fori?

or R} does not exist anymore in the equation for th%rpnrmal coordinatéz,. These monoms are
particularly important and are callédvariant-breakingterms. Their cancellation will be related
to nonlinear normal modes and invariant manifold in the setkisection.

e Thanks to the real formulation, oscillator-equations dstaimed for the normal form. One can
easily recover second-order oscillator equations by gubisg for (40a) in (40b). This formalism
allows for simple physical meaning of the different terms.

e Eq. (39) is identity-tangent: the linear results are thesvered for small amplitudes.

¢ \elocity-dependent terms arise in Egs. (40) only if quadmabn-linearity is present in the initial
problem given by (2). For example, for a non-linear beam lgrobfor whichgfj = 0, no velocity-
dependent terms appear when considering the third-ordmodmation of the dynamics onto
invariant manifolds.

2.5 NNMs and Normal form

Nonlinear Normal Modes (NNMSs) is the core of this CISM couoseModal analysis of nonlinear sys-
tems. The main idea of defining a NNM is to try extend to notiblinear normal modes at the nonlinear
stage. Linear modes offer a very interesting basis for aivayand understanding the dynamics of linear
systems. Their main property relies in the decoupling ofttpeations of motion, resulting in superposi-
tion theorem. This decoupling can be interpreted, on a gearakviewpoint, in the phase space of the
system, as an invariance property of the linear eigenspadgésh are two-dimensional invariant planes
of the linear system.

The idea of defining a hon-linear normal mode is to extend dwudpling of the linear eigenspaces
exhibited at the linear stage. Letting, = hfz?jk = 0in Eq. (2), and initiating a motion along thé"
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Figure 3: Schematics of the system containing quadraticcabit nonlinearities

eigendirection results in a motion which is always contdiméthin it. This is theinvariance property
one would be able to extend to the non-linear regime.

Let us introduce a simple two-dofs example in order to itatgt the problem. The system, composed
of a mass connected to two nonlinear springs, is represémfiglire 3. The dynamics of the system is
described by :

w%—kw%

2
. w
X+ w?X) + 71(3)(12 + X))+ wiX 1 Xo + X1 (X2 4+ X2) =0, (42a)

2 2
w7y +w2X2

2
Xo+wiXo + 72(3)(22 + X))+ X1 X5 + (X2 +X2) =0, (42b)

where X; = z1/lp and Xy = x2/lp have been nondimensionalized by the lengtlof the springs at
rest. The system is fully parameterized by the two eigenfeagies(w;,w>). The phase space R,

0.05
\\<// o/

Y, -0.05 -0.05 X,

Figure 4: Trajectories (closed periodic orbits) of theear system, represented in spacé;, Y, Xo).
Motions along the first linear mode with initial conditiodd; (¢ = 0) = 0.01, 0.025 and 0.05. The
linear eigenspace is represented by the horizontal p&ne= 0. The trajectories initiated along the
linear mode stay within for al time(invariance property).

so that illustration of the complete phase space is not plesskigure 4 shows, in a selected subspace
(X1,Y7, X9), with Y7 = X3, three trajectories of the correspondiingear system, where quadratic and
cubic terms have been cancelled. The linear modes of thersysbrresponds to purely vertical and
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purely horizontal motions of the mass. In phase space, tieatdieigenspaces are the two-dimensional
planes, respectively defined b¥, = Y> = 0 for the first mode, and{; = Y; = 0 for the second
mode. The three trajectories have been computed for thitied gonditions X (¢ = 0) = 0.01, 0.025
and 0.05 (all other coordinates equal to zero). As awaitedhi linear system, the motion initiated in
the first linear mode stay in this plane for all tirtiethis is the invariance property, that results from the
decoupling of the system at the linear stage.

L (a) Phase space (b) Physical space
1 2 3

Figure 5: Trajectories of the nonlinear system, Eqgs. (4)tidhs initiated in the first linear mode with
initial conditions X;(¢ = 0) = 0.01, 0.025 and 0.05 (all other coordinates to zero), illustrating the
non-invariance of the linear eigenspace for the nonlingstes.

Let us consider now the complete nonlinear system. We réipeaame numerical experiment, that is
to say we compute the three trajectories corresponding ittitéal condition in the first linear mode with
increasing amplitudeé; (¢t = 0) = 0.01, 0.025 and 0.05. The corresponding trajectories are reported
in Fig. 5. As the first one with the smallest amplitude stayhia vicinity of the linear eigenespace, it
is very clear from the other two that the invariance propé&tygot fulfilled anymore, as the trajectories
are whirling around the linear eigenspace. It is worth nweable that this behaviour only results on the
presence of the invariant-breaking tei on the second oscillator-equation (42b): as energy is fed on
the first oscillator along the first linear mode, the teXiptransfers a small amount of energy and excites
the oscillations around the second coordinate, thus uigjdhe invariance property.

Invariance can be recovered by selecting another set ifliodnditions. Figure 6 shows the trajecto-
ries computed fof X1, X»)=(0.01,0) ; (0.025, 2.3*10°) and (0.05, 1.8*10%), i.e. the same amplitude
for X7 but with a small, selected perturbation &, which allows recovering closed periodic orbits.
The figure illustrates the dual definition of a NNM for consgive system, which can be viewed either
as a family of periodic orbits, or as an invariant manifolmhdent at origin to the corresponding linear
eigenspace.

As noted previously, the invariant-breaking terms are eted with the change of coordinates of the
normal transformation, as long as no internal resonanegsrasent between the eigenfrequencies. Fig. 7
presents a schematical representation of the phase spdeeg@ometrical interpretation of the normal
form transformation. As expressed with the modal cooréimathe equations of motion are written in
a phase space which is spanned by the linear eigenspaceslifh@osional planes parameterized by
(Xp,Y,)). Due to the presence of invariant-breaking terms, whernlyimamics is expressed with these
coordinates, linear modes are not invariant in the nontinegime. To recover invariance, the idea is to
span the phase space with the NNMs (the invariant manifdltheosystem, sketched dgl; and M5 in
Fig. 7. The normal transformation is the key for expresshegriew,normal coordinateglinked to the
invariant manifolds), to the original, modal ones. The $farmation is nonlinear, expressing the fact
that the invariant manifolds are curved subspaces. Thénaamltransform cancels the invariant-breaking
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(a) Phase space 2/3 (b) Physical space

l 2

NN

NN
N

N
AR

R
R
N
AR
AN

N

-0.05 ~° X1

Figure 6: Trajectories (closed periodic orbits) of the muedr system, Egs. (42). Motions initiated in
the first nonlinear normal mode with initial conditiof¥, X)=(0.01,0) ; (0.025, 2.3*10°) and (0.05,
1.8*10%). Shaded surface: invariant manifold (first NNM).

terms. The dynamics, expressed with the normal coordinathence written in a curved invariant-based
span of the phase space.

(X2,Y2)
(R..S)

(R, .S )
(X 1 !Yl )

Figure 7: Schematic representation of a four-dimensiohabkp space for illustrating the normal trans-
form. Two-dimensional manifolds rare represented by lifés5 , X5, Y1, Y>): modal coordinates, carte-
sian grid: mesh generated by the linear eigenspace pandwaétn. M, Ms: invariant manifolds.
(Rq1, R2, S1,S2): normal coordinates. Curved grid associated to the invariantébapan of the phase
space.

The invariance property is key for allowing one to operateper truncations. Indeed, when working
out with real systems emanating from the discretizationoottiouous structures, one is led to manipu-
late an a priori infinite number of modes which must be trueddor numerical treatments. The results
shown here with a simple two-dofs system can easily extersystems with numerous dofs that can
be decomposed in subgroups. Due to the presence of invarneaiing nonlinear terms, truncations on
the dynamics expressed with the modal coordinates leadsitdate trajectories that do not exist in the
complete phase space. On the other hand, once the dynampiessxd in the curved, invariant-based
span, proper truncations can be realized, as the trajesteimulated with the truncated system corre-
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sponds to those of the complete system. This remark is veppritant and will be the key to derive
accurate reduced-order models that are alijeto predict the correct type of nonlinearity for a given set
of coupled oscillators.

Dynamical system

: : Normal dynamic
(phyS(l(;?ﬂ CoY—c;rdlnates) Non-linear change of y
it i

co-ordinates
X—=R
| Y—S
direct study :: Study
| Reduced-order
many d.o.f. | models
\/ inverse variable change

(XM, Y©®) = (R, SO)

Figure 8: lllustration of the nonlinear transform for derron of reduced-order models.

Fig. 8 illustrates the general idea for deriving accuraduced-order models (ROMs) thanks to
normal form theory. As compared to reduction methods ddrbyeusing a linear change of coordinates
(e.g. projection onto the linear mode basis, or Proper OrthogbBmaiomposition (POD) method), the
idea here is to use monlinear change of coordinates. Once the system expressed in itsaahform,
the truncations can be realized as one is ascertained ofcanaée& and meaningful result thanks to the
invariance property. In that respect, the method proposed tan thus be sumed up as using a more
sophisiticated, nonlinear transformation, before réaizhe truncations.

The next subsection considers the simplest case where thennreduced to a single NNM. More
complicated cases involving internal resonances are &adridlsubsection 2.7, as well as in section 4
with applications to shells.

2.6 Single-mode motion

In order to restrict the dynamics to a single NNM, one has fagtroceed as usual with theormal
coordinates. As invariance is recovered, to stady pt” NNM, all the other coordinatek # p need to
be cancelled:

Vk#p: R, =5, =0, (43)

Susbtituting for (43) in (39) gives the geometry of the maldifin phase space (approximated at third
order):

Vk#p:

_k 2 k o2 k 3 k 2
X = ap, Ry + 0, Sy + 1ppp Ry + iy, Rp Sy, (44a)
k ka3 k 2
Yy = VPPRPSP + Mpppsp + VpppSpRp' (44b)

This set of2(N — 1) equations in a phase space of dimengidndefines the geometry of the invariant
manifold, up to third order. Detailed comparisons with etb@mputations led by different authors, have
been realized. In particular the invariant manifold pragedproposed by S. Shaw and C. Pierre in [42]
and its asymptotic development for solving out the PartiffiePential Equation defining the geometry
resolved in [37, 38] gives exactly the same expressions. séhee comparison has also been realized
with the NNM computation procedure with a multiple scaleraggh, as proposed by Nayfeh [34], and
once again all coefficients match, evidencing the equicalaf the different methods.
The dynamics onto thg’ manifold is found by substituting for (43) in (40), and reads

)RS+ B? R,R,” = 0. (45)

Ry +wlR,+ (AL, + P L

ppp ppp
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This procedure for reducing the dynamics to selected iama8ubspaces, is the key for deriving out
proper reduced-order models that will be able to reprodildhequalitative and quantitative features
of the complete system. This point will be key for the remamndf the presentation. Note that the
normal form theory provides the most complete picture fqregsing the NNMs of a system, as the
nonlinear change of coordinate (39) is a complete changm the phase space into itself. It contains
the geometry of thé&v NNMs that are tangent at origin to the linear eigenspaceasttars can be viewed
as "extensions” of the linear modes. For recovering resaitained with other methods,g. [42, 34]
from normal form theory, one has to restrict the results tigé#ar cases. On the other hand, extending
the result obtained via.g.the invariant manifold method, to more than one dof (at Bé€sis generally
a very tedious task [37, 23].

2.7 Classification of nonlinear terms, case of internal restance

From all the results obtained in the previous subsectior, ismow able to draw out a classification
of the nonlinear coupling terms appearing in the equatidnaation, in order to get a clear physical

understanding of their meaning on the dynamics. For thgiqeer, let us consider a general, two dofs
system with quadratic and cubic nonlinearities:

X1+ wiXi + gl X7+ 91 X1 Xo + g5, X5

+ hi X7+ Pl X7 Xo + hignX1X5 + hygy X5 =0, (46a)
Xo +wsXo + g1 X7 + 912 X1 Xo + g5, X5
+ B3 XY 4 B X7 Xo + hipn X1 X5 + h3gp X5 =0, (46Db)

and let us focus on the first oscillator equation. The follmyvclassification can be derived from the
precedent results:

e The cubic termsX; and X; X2 aretrivially resonant terms they can not be cancelled by the
change of coordinate. Note that when no internal resonahceder two are presengll the
quadratic terms can be cancelled by the normal transform.

e All the other terms can be cancelled by the normal transféxmong them, the term&? and X3
areinvariant-breaking termsthey are source terms that couple equations 1 and 2, whatees-
onance relationship between the eigenfrequencies exigitoif no internal resonance exist, they
are coinechon-resonant coupling termstherwise the coupling is stronger, energy is exchanged
between the modes and the terms are comednant coupling terms

Let us consider now the case of internal resonance to expainthe precedent results must be
adapted. Let us assume for illustration that a relationship= 2w, exist between the two eigenfre-
guencies. This is a second-order resonance relationsHighvimplies that quadratic terms won't be
cancellable by the normal transform. To recover the resor@upling terms that will stay in the normal
form (without making the complete calculation), the foliog rule of thumb can be adopted. At the
linear stage, the solution foX; and X, reads:X; ~ exp +iwt, Xo ~ exp +iwst. The nonlinear term
X? behaves as (amongts other solutioR$) ~ exp 2iw;t = exp iwst. Hence this term can be viewed as
a forcing term for the second oscillator equation, which @@over exactly tuned at its eigenfrequency,
and thus will lead to a resonance and the appearance of séeutzs. This resonance is the key for
explaining why a small denominator problem appear when ctimg the normal form, so that this term
can not be removed. Following the same reasoning and caimgjdeow the monom¥; X5, one can see
that this term can produce oscillatory motions liKe X, ~ expi(ws — wy)t = expiw;t. hence this
term is a forcing term acting at the resonance frequencyeofitht oscillator, thus it will stay in the first
oscillator-equation in the normal form. As a conclusiorm, tftat casevs = 2w, the normal form up to
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guadratic term reads:

X1 +wiX) + gL X1 X5 =0, (47a)
Xo +wiXy + 4 X2 =0, (47b)

At third order, the internal resonance = 2w; do not create new resonance condition, so that the cubic
terms can be treated as usual. the only difficulty is to trackdnlinear coefficient of the normal form
that corresponds to the monoms which have not been cancéhede terms are easily found by looking
to the formulas given in Appendix A. Then the complete norfoain up to order three can easily be
written.

This example shows that the treatment of internal resonasnoet made too difficult with the for-
malism of normal form, contrary to the huge complexitieolmed in other methods (invariant manifold,
multiple scales) to adapt their treatments to the case effriat resonance.

2.8 Damped systems

All the developments presented in the previous section baem obtained under the assumption of a
conservative system. Obviously when one deals with reatwtres, damping is at hand and should be
considered, in particular in the development of accuradeced-order models. A simple strategy is to
build the ROM without considering the damping, with the rioedr change of coordinate presented in
subsection 2.4. Then damping could be added on the normmaldgnamicsj.e. on the reduced order
model, directly. However, numerical examples have shown ttis method underestimates the whole
damping present in the structure [80]This underestimation is a consequence of the fact thatggesin
NNM merges the contributions of humerous linear normal sod&hen modal damping is added to
each linear contribution, the decay rate of all the lineadesothat are gathered to create the selected
NNM are somehow added, so that the decay rate onto the maisfolot as simple as the initial de-
cay rate postulated for the linear modal coordinates. Hémeaormal form strategy must be adapted
to handle the case of damped systems. The presentation howselosely the results published in [50].

The starting point is now an assembly §foscillator-equations, expressed within the modal basis,
so that the linear coupling terms are diagonal. A modal dagh@ assumed so that the dynamics reads,
Vp=1...N:

N N N N N
Xp+w2Xp + 250, X, + > Y XX+ 0NN XXX =0, (48)
i=1 j>i i=1 j>i k>j

Deriving a correct mechanical model of damping (includimgrinoelasticity, viscoelasticity, fluid-structure
interaction...) for a large class of structure is an extigrddficult task, which also greatly depends on
some specific properties of the material used. The greatritya@if studies on vibrations of continuous
structures uses an ad-hoc viscous modal damping as the acle iwhere postulated. It is assumed that
the modal damping introduced gives an excellent approximaif the energy losses in the considered
structure, and has been finely tuned for each mode by anyabl@imethod (numerical prediction or
experimental fitting). Underdamped eigenmodes, corredipgrto oscillatory motions, are considered,
sothatVp=1.N: § < 1.

Being a linear term, the modal viscous damping has an effe¢the eigenvalues of the structures.
For modep, the two complex conjugated eigenvalues reads (whireuch thai? = —1):

Ay = —&uwp Fiwpy /1 — &2 (49)

3These examples will be shown in section 4.
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Besides the real part of Eq. (49) which controls the decayafenergy along the™ linear eigenspace,
the imaginary part shows that the damping also have an e@ffettte oscillation frequency. For numerous
thin metallic structures, the damping ratipis very small for allp, so that the assumption of a lightly
damped system could be considered. In that case, a first-@eslelopment of (49) shows that:

A~ diw, — Gup + O(ED), (50)

which shows that the correction on the frequency is at leagicand-order effect. For computing the
normal form, the general formalism can be adopted, exogltiat now the eigenvalues are complex
number with real and imaginary parts. At first sight, the aomoce of the real part could let us think that
the trivial resonance relationships would be destroyedhag were a simple consequence of having a
purely imaginary eigenspectrum. However, the constramtthe normal form computed for the damped
system is an extrapolation of the undamped system, is assuhtés implies that, by continuity, when
the damping rati, tends to zero, the new calculation must recover that oldaioethe undamped
system. In particular, this condition involves that smahdminator of the form /¢, are not allowed
in the calculation. Interestingly, these small denomirsatppear®nly for the trivially resonant terms.
Hence all the calculations are led with the extra conditiwat tvhen a coefficient in the normal form
transform scales ak/¢,, then it must be cancelled, and the corresponding monomirstéae normal
form. By doing so, only the trivially resonant terms are keyotd a continuity from undamped to damped
real normal forms, is obtained.

The calculation proceeds in the same manner as in the catiserecase. It is still assumed that no
internal resonance are at hér{the case of internal resonance being easily treated asnsinosubsec-
tion 2.7). The non-linear change of co-ordinates reads:

N N N N N N
X, =Ry + 3 S () RiR+1,S:8) + 3 S & RS, + Z SN (P RiR i+ 57,5581 )

i=1 j>i i=1 j=1 §>i k>j

N N N
+ ZZZ ( Z]kSR By, +uzykR JSk
Jj=1k>j

=1

N N N N N N
=St S A A ¢SS s + 3
i=1 j>i i=1 j>i

(51a)

Mz

).
(MR Ry Ry + 183,851 )
)

i=1 j=1 E>j
N N N
+ZZZ(”,€SR Ry + (73 RiS; S (51b)
i=1 j=1k>j

The normal dynamics can thus be explicitely writt&p:= 1...NV :

R, =S, (52a)
S 2 2 2
SP - waP B 2517“1’5? o (hppp + Agpp) R ngpR S CpppRpS
N
P P P 2 P G2 4 (O P Q.
— Iy [Z [(hpjj + Apy; + Ajpp) B + By + (G + Cp) By SJ}
Jj>p
p Ap AP 2 ¥4 2 p p . Q.
+ Z hllp + mp + pZZ)R + BpZZSZ (CpZZ + CZpZ)R S
i<p
N
p 2 P 2
50|20 (Bl + €Ly 2) 4 3 (Bl s+ 2| (520
j>p i<p

4Once again, for obtaining continuity with the conservatiase, internal resonance relationships are defined herdanl
the imaginary part (frequency) of the eigenvalues.
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The coefficient§ A7, By, C7,) arise from the cancellation of the quadratic terms. Theires-
sions are:
Z]k‘ - Zgzl jkﬁ + ngzajkv (53a)
1> 1<i
zgk Zgzl 7k + Zglz (53b)
1> 1<i
Uk Zgzl Cjk + ngzcjk (53c)
1> 1<i

As compared to theonservative caséntroducing the damping in the linear operator leads tora no
linear change of co-ordinates, Eq. (39), which is now comep(m terms of the monom@&k;, S;)). The
newly introduced coefficients{c);, af;, 81, si, s Mg Gt Pring a perturbation which is at
least of the order of the damplng rati¢s;}. More precisely, Eq. (39) may be expanded as a power
series of the small perturbative terfi§ }. It is then found that the coefficients that were non-zero in
the conservative cased {%7 bf], fyfj, rfjk, fjk, uf]k, Zk}) contains only even powers of the
damping ratios, and the new ternfs;;, of;, 87, s, Z]k, tfjk, Like Gyt contains only odd powers of
the damping ratios. As a consequence, {thé Uk, k} terms defined in Egs. (53), can also be
expanded as power series of the damping ratios. It is thendfduat{Al ik Bl BP. } contains only even
powers of the damping ratios and may be sorted accordi®@(£3), O(¢2), O(¢}), ... So that, in the
limit of a conservative systemsl;, and B}, tends to a non-zero value. On the other hatf, sorts
according to odd powers termé& (¢}), O(£3), O(€?), ... So that it is equal to zero in the conservative
case. Hence this "damped” formulation allows one to see &nepdd normal dynamics as a perturbation
of the undamped one, and could be use in great generalityeasotiservative results are recovered by
simply cancelling all the,,.

Let us comment some of the differences brought by this nemditation. To have a better picture,
let us restrict ourselve to studying a single NNM, labelle@master mode), obtained by letting: #

p, R, = S = 0in the previous expressions. The geometry ofﬂﬂ%manifold in phase space now
reads:

VEk#p:
2 1k a2 3 3, 4k p2 2
X appRp + bppS, + c o pSp + rpppRp + spppSp + tpppRpS + upppR Sy, (54a)
_ 2 E o2 E p3 3 2
Yy = O‘ppRp + BppSp + VPPR Sp + Appp By + ”ppps + Vppp pS + CpppR Sp- (54b)

As compared to the conservative case, Eq (44) new coeaiffic{and thus new monoms) appears. Sec-
ondly the already present coefficientsy. app, pp, now depends on the damping values. An illustration
of their dependence is shown in Fig. 9, obtained for the tefs-@ystem presented in subsection 2.5.
The equations of motion are given by Egs. (42), and modal degraf the form2§pprp, is added on
each equation, fgr=1,2. The parameters have been setite= 2, w,=4.5. The first NNM is selected, so
thatp=1 andk=2. The figure shows the variation of the quadratic coeffisi@n the first equationg?,,

b3, andc?,, for two different cases. In Fig. 9(a), the two damping ceéffits have the same values, so
thaté,=£,=¢, and¢ is increased from 0 to 0.4, so that a system that is more and damnped is studied.
When¢;=£>=0, the conservative results are recover€g:is equal to zero wheread,, b2, have a non-
zero value. One can see that the variations may be largerog sbthe coefficients, so that the geometry
of the manifold can be significantly changed when dampingdseased. In the second case, Fig. 9(b),
the damping on the first linear mode is selected at a constanatl) value £,=10"3, and¢, is raised from

0 to 0.4 in order to simulate a situation where the slave mededre and more damped, as compared to
the master. Here the variations are also found to be imptdidafarge values of the damping.
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Figure 9: Variarions of the coefficientg,, b?, andc?,, controlling the quadratic part of the geometry
of the first NNM, as functions of the damping ratios, for the+tdofs system. Parameters asg: = 2,
wy=4.5. (a): variations for an increasing value of the two dengpatios taken as equaf;=£>=¢£. (b):
variations for a fixed valu¢; =102 and an increasing,.

The normal dynamics for a single NNM motion when damping éduided reads:

R, + wlR, + 2wyl + (B, + AP ) RS + BE, R,R2 + CP) R2R, = 0. (55)
The new coefficients appearing in this equation, as compargd. (45), isCh,,. Eq. (53c) reveals that
Chyp is constructed from all the values of thg, k=1...N, that also directly influences the geometry of

the manifold, Eq. (54a). The corresponding mond%ﬁRp, can be interpreted as a nonlinear damper.

Hence the whole damping for the dynamics on;bH’éNNM gathers a linear damping terr@gpwap,
defining the energy decay rate onto the linear mode (remethhtthe change of coordinate is identity-
tangent), and a nonlinear damping temﬁppRng, allowing for a more precise definition of the global
decay rate onto the manifold, taking into account all dampérms of the linear contributions that are
included in the construction of the NNM. The coefficiert$,, and B,,, now depends on the damping
in a manner that is proportional txﬁp andb’;p, so that their variations can be inferred from Fig. 9. These
coefficients are responsible for the type of nonlinearigr@lening/softening behaviour) of the NNM, so
a more complete study is postponed to the next section whiehtirely devoted to this problematic.

2.9 Closing remarks

The main theoretical results for deriving a normal form aggh for nonlinear normal modes, has been
shown in this section. The remainder of the lecture is deltweapplications of the results obtained.
Some of the assumptions made in this section can be easilyerklto extend the generality of the
results. In particular, the special case of structuralesyst with quadratic and cubic nonlinearities,
Egs. (48), has been here assumed as it contains the greaitynajoapplications to thin structures
like beams, plates and shells, vibrating at large amplgudowever, more general cases including for
example nonlinear damping monoms of the fakinX; (quadratic) orX; X, Xj, X; X; X}, are of course
amenable to a solution following the same steps. Anothetdiion could appear through the asymptotic
develoments, systematically stopped at third order. Owgegna this limitation can be overcome by
pushing further the developments, which is not a theorgpiczblem, but may appear as more and more
difficult, due to the complexity one has to facedy. by pushing up to order 5. Moreover, the legitimate
question is to know if the game is worth the candle. Asymptetipansions up to order five realized for
computing the NNMs with the center manifold technique in][gl8ow that the gain in accuracy brought
by the fifth-order is not significative, and in some cases caupdorest than the third-order. Closer
investigations on the validity limits of normal form appobain [28], as well as thorough comparisons
between asymptotics and numerical computation of NNMsOj, [dppears to reach the same conclusion,
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that is to say that pushing further the asymptotics may leaghtall improvments as compared to the
computational effort needed. In the remainder of the legttire third-order expansion will thus always
be used for applications.

3 Hardening/softening behaviour

This section is entirely devoted to the correct predictibthe type of nonlinearity (hardening/softening
behaviour) for the modes of an assemblyNofonlinear oscillator equations as in Eg. (2). NNMs and
normal form are used to derive a proper, easy-to-use andsammalytical method. The presentation in
subsections 3.1 and 3.2 recalls the main results obtaingth]n The next subsection 3.3 with applica-
tions to shells gives the main results published in [53, Whijle subsection 3.4 gathers important results
published in [50] on the influence of the damping.

3.1 Definition

In nonlinear vibrations, the oscillation frequencies ofyatem depend on vibration amplitude, a feature
that has no counterpart in linear theory. This dependenctéeaf two different types. Eitherteardening
behaviour is at hand, which implies that the oscillatiorgérencyincreaseswith the amplitude, or a
softeningtype nonlinearity is present, which means that the osttatrequencydecreasewith the
amplitude. This behaviour can be easily illustrated with Eruffing oscillator:

X+wiX +ax3=0. (56)

A perturbation method (multiple scales, Poincaré-LiadstAveraging, ...) can be used in order to derive
the first-order relationship between the nonlinear ogwiafrequency, denotedy ;,, and the amplitude
a of the oscillation frequency, which read(t) = a cos(wnrt + ¢) + O(a?). We obtain:

WNL = Wo <1 + 3—();a2> . (57)
8wy

This equation clearly shows that a hardening behaviourtsinéd wheny > 0, which also explains the
origin of the vocable "hardening”: whem > 0, the nonlinear stiffness of the oscillator can be written as
Wi X (1+ %Xz), which means that the mor€ is large (the particle is far from the equilibrium positipn)
the more the spring is stiff: the stiffness term has thus ad#aing behaviour”. On the other hand when
a < 0, the moreX is large the less the restoring force is important, and apresatly the oscillation
frequency decreases with vibration amplitude.

Let us consider now the case of a single nonlinear oscillaitir quadratic and cubic nonlinearities.
We can for example assume that the system (2) has been redugeaihgle linear mode, say number
and thus the dynamics reads:

Xp+wp Xy, + gh, X+ hb,, X5 = 0. (58)

The frequency-amplitude relationship in this case writes:

. - 1 10g5,>
WNI = Wo (1 + Fpa2) , with T') = 2 <3h£pp - 355 ) . (59)
P P

One can see that the quadratic and cubic coefficients hawesibp@ffects on the type of nonlinearity.
However, as it has been shown previously, linear eigenspaee not invariant subspaces. Hence
reducing a system aV linear oscillator as Eqg. (2) to a single linear mode, in otdepredict the type
of nonlinearity of the selected mode, may lead to erroneesslts. The main reason comes from the
non-invariance: as the trajectories computed with Eq. ¢&8)ot exist for the complete system, there is
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no reason that the type of nonlinearity match. On the othed hii one uses the NNMs, as invariance
is recovered, the type of nonlinearity can be predicted, fandhe same complexity at hand. Indeed,
using the formalism presented previously, reducing theadyios to thepth NNM leads to still consider

a single oscillator equation, but inside wich all the nosergant couplings have been included. The
dynamics for a single NNM is given in Eq. (45). A first-orderfpebative method then leads to the
following relationship:

3(A£pp + hgpp) + W;%Bzgpp

wynp =wo (1+Tpa®), with T),= 3
p

(60)

In this equation, on can see that the influence of all the dlagar modes (used to construct the corre-
sponding NNM) are enclosed in th&),, and BY,,, coefficients. Their variation is thus key to properly
predict the type of nonlinearity. From Egs. (41), and stibatitig the expressions af, andb}, from the
nonlinear transform (see Eqgs.(107) in appendix 4),, and B.,,, can be explicited as:

AP — i 2w§ —uwf (&%, + g")d" o1a)
" 1=1 w? (wy — 2wy) (wy + 2w,,) L TPIIRP?
N
P =2 : (95 + 91) - (61b)
. wi (wi — 2wp) (wr + 2wp) pl T Jlp/Ipp

=1

Note that for applying these formulae, the implicit coniemtused throughout the noteg”.j = 0 when
i > j, must be applied.
These expressions call for the following comments:

e Considering one single mode, sayin the original equations of motion, would lead, by sulstit
tion, to recover the type of nonlinearity given in Eq. (59helsummations, in the case oiNadofs
system, clearly shows how all the slave modes can influercy/fie of nonlinearity.

e The expressions in Egs (61) shows that in case of internaheexe, a small denominator effect
appears, leading to a divergence in the expressioas,@ndbb,, and thus on the predicted type of
nonlinearityl’,. Even though this is in the line of all the calculations pried, a further comment
is needed. Interestingly, there is only one kind of intereabnance, namely 2:1 resonance, which
have an influence on the type of non-linearity. When studyirep™ mode, only thd™ modes,
whose eigenfrequencies are such that= 2w, are able to significantly change the valueljf
Other second-order internal resonaneeg, w, = 2w, Of w; + wy, = wy,, are not able to produce
a small denominator and to change the valu&ofFinally, third-order internal resonances have
no influence since only the first order correction to the baakbcurve is studied (Eq. (60)).

¢ In case of 2:1 internal resonance, the system cannot beeddoca single NNM. Morevover,
perturbative studies shows that in the 2:1 internal resomaase, due to the presence of invariant-
breaking terms, only coupled solutions exist. Thus the tyfron-linearity, which is a notion
associated to the backbone curve of a single oscillatos doehave anymore meaning.

The next subsection considers a two-dofs example in ordbetter highlight the main features of
the method. Then continuous structures with an infinite remolb dofs will be considered. The method
of normal form for NNMs will there find a very good applicatioas it provides a reliable and efficient
method to predict properly their type of nonlinearity.

3.2 Atwo dofs example

The two dofs system composed of a masse connnected to twimeankprings, whose equations of
motions are given in Egs. (42), is once again considered.
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Considering the first linear mode leads to a dynamics goddoge

w%-l—w%
2

2

X1 +wiXi+ X7+ X?=0 (62)

The backbone curve in this case reads:

— 3 3w§ 9
WNL = w1 (1 + (—4 + 16wf)a ) ; (63)
wherew;, stands for the non-linear angular frequency found with edirmode approximation, and
is the amplitude of the motion considerel; = a cos(@nrt + Bo) + ...

In the parameter plangu;,w-), regions of hardening or softening behaviour are governethé
sign of:

~ 3 3w?
r=-= 2
R TOR

(64)

Considering now the first non-linear mode, which is the ragbproximation if one is interested in a
motion non-linearly vibrating along the first physical modwlicates that the oscillations are governed
by Eq. (45), withp = 1. Computing the coefficients and replacing in Eq. (60) shdws the hardening
or softening behaviour onto the first invariant manifold étedmined by the sign of:

r_ 3 n 3wr Wi (8w? — 3w?)
P4 1602 T 1602 (w2 — dw?)

(65)

First linear eigenspace First non-linear invariant manifold

2

o o

Figure 10: Regions of hardening/softening behaviour inpdl@meter planéw?, w3), for the two-dofs
system. Yellow: hardening behaviour, blue: softening bEha. Left: prediction given by the sign
of I';, i.e. with truncation to the first linear mode. Right: predictioivem by the sign of"';, i.e. for
oscillatory motions along the first NNM.

The behaviour of’; shows that a hardening behaviour is found whers large as compared toy,
otherwise a softening behaviour is at hand. This can beyeasderstood by comparing the quadratic
and cubic coefficients of the oscillator-equation (62). @e other hand, the prediction for harden-
ing/softening region in parameter space with a single NNihaation shows clearly the correction
brought by considering properly the bending of the phaseespaused by the presence of the sec-
ond oscillator. More specifically, this effect can be dasiid can change the effective behaviour of the
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non-linear oscillations. Figure 10 shows the hardening softening region in the two cases (simply
given by the signs of; in the linear case, anf; in the non-linear case). One can notice for example
the upper-left region, which is predicted to exhibit a haidg behaviour by the linear approximation,
whereas the real behaviour is soft.

In order to have a better picture of the behaviour of the tyffpma linearity versus the two parameters
(w1,ws) of the system, Figure 11 shows two cuts in this two-dimeraiparameter plane, namely for
fixed wo=2 andw, variable, then for fixeds;=1/0.5 andw, variable,i.e. along the two lines indicated
in Fig. 10. These cuts reveals that the behaviouF pfs monotone, whereas; shows a singularity,
occuring forws = 2wy, i.e. at the 2:1 internal resonance between the two eigenfregegeengs already
underlined, in the vicinity of this internal resonance, tamcept of the type of nonlinearity loses its
meaning because the dynamics is essentially two-dimeailséomd cannot be reduced to a single NNM.
However, far from the 2:1 resonance, the predicted type ofimearity from the single NNM solution is
reliable, and depart from the approximation given by comsidy a single linear mode.

(b)

o o)
£ c
c c ~ -
(] () rl//’
° o .
] © i
< & -
o o
£ £
5 5
£ =
o ©
) a| o
0 1 2 3 2 4 5 6

Figure 11: Type of nonlinearity for the two-dofs examplemmarison between the prediction given by a
single linear model’;, versus the correct prediction given by a single NNM, (a): we=2,w? € [0, 5],
(@): w1=v/0.5, w3 € [0, 5]

3.3 Application to shells

The method shown previously for predicting accurately thpetof nonlinearity, is now applied to the
case of spherical-cap thin shallow shells with a varyingus@f curvatureR. Flat plates are known
to exhibit a hardening behaviour,as it has been shown betbretically and experimentally (see e.qg.
[48, 58, 35, 44, 54, 46]), which means that the leading cub@n‘ﬁ::ienthgpp is positive. Introducing a
radius of curvaturer, going to infinity (perfect plate) to finite values (spheticap shells) introduces an
asymmetry in the restoring force, due to the loss of symmatihie neutral plane of the shell. In turn,
quadratic nonlinearity appears in the equations of motiaith a magnitude proportioanl to/R. The
type of nonlinearity is thus awaited to vary from hardeniagoftening type, depending on the selected
mode and the geometry. The aim of this subsection is to derivperly the prediction of this type of
nonlinearity for spherical shells, with the formalism of NI¥ and normal form.

The model is based on von Karman kinematical assumptioiiseostrain-displacement relationship,
in order to take into account moderately large vibration Gtongies. The governing equations are first
recalled, then the Galerkin method is briefly reviewed ireor explain how to pass from the PDE of
motion to oscillator-equations having the form of Eqgs. (Bgn finally the type of nonlinearity for some
eigenmodes of the structure, are given. A geometrical moedsional parameter, inversely proportional
to the curvature of the shell, is introduced, in order to gthdw the type of nonlinearity is modified
when continuously transforming a thin circular plate to hesgral-cap shell.
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3.3.1 Von Karman model

Von Karman kinematical assumption relies in a clever dificption of the general 3-D strain-displacement
relationship, allowing to take into account moderatelgdéavibration amplitudes, where the coupling be-
tween in-plane and transverse motions is taken into accolimt model has first been written for the
static behaviour of plates [25], and has then been genedalizdynamical behaviour of plates and shells
[11, 14]. In this subsection we follow the derivations prepd in [53]. A spherical shell of thickness
h, radius of curvaturé? and outer diameteta, made of a homogeneous isotropic material of density
Poisson ratiar and Young's modulug’, see Fig. 12. Numerous assumptions pertaining to the dieriva
of von Karman model e.g. moderate rotations, in-plane inertia — are not recallee lfarthe sake of
brevity, the interested reader is referred to [11, 14, 54 A8 for a more thorough description. About
the geometry of the shell, it is assumed that:

e the shellis thinth/a < 1 andh/R < 1,

e the shell is shallowa/R < 1;

Figure 12: Geometry of the shell: three-dimensional skatahcross section.

The equations of motion are given in terms of the transvasg#atemento(r, 0, t) along the normal
to the mid-surface and the Airy stress functiBfr, 6,¢). This is a peculiarity of the von Karman model,
which allows expression of the in-plane motions into thealbed Airy stress functiod’. The equations
of motion reads, for all time:

DAAw + %AF + phto =L(w, F), (66a)
AAF — %Aw =— EThL(w,w), (66b)

whereD = Eh3/12(1 — v?) is the flexural rigidity, is the second partial derivative af with respect
to time, A is the laplacian and. is a bilinear quadratic operator. With the assumption ofalsiv shell
fulfilled, the spatial operators are written in polar cooades, and thus reads:

1 1

AC)=()pr + ;('),r + ﬁ('),%’ (67)

and

T T T T T

F F w w w w F F
L F) = wpr (25 T ) 4 (B2 4 200) -2 (M- 20) (222 22 eo)

Eqgs (66) express the dynamics of a spherical-cap shellpuititexternal forcing, nor damping terms.
These equations are valid for plates as well, which is obthifor a radius of curvatur& going to
infinity. This, in turn, simplifies two terms in (66). The liaeremaining terms in Eq. (66a) are the
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classical inertia and flexural rigidity, that one finds batkhie linear Kirchhoff-Love model for vibration
of plates. The linear coupling term between Eqs (66a) and)(Gfoportional tol /R, expresses the
linear coupling between transverse and in-plane motiomgwexist for shells only. For plates, these
terms vanish. Finally, the nonlinear coupling term refl¢ieesnonlinear coupling between transverse and
in-plane motions. One can observe that for shells, this loaymplies quadratic and cubic terms for
the displacement, whereas for plates, only cubic terms are present.

Dimensionless variables are introduced as:

r=a7, t=a’*\/ph/Dt, w=hw, F=FEhF (69)

Substituting the above definitions in equations of motida(6) and dropping the overbars in the results,
one obtains:

AAw + e, AF + W =¢e. L(w, F), (70a)
AAF — /rAw = —%L(w,w), (70b)

where the aspect ratio of the shell has been introduced:

a4

T R2R?

As it will be shown next, for a fixed value of the Poisson ratjall the linear results (eigenfrequencies
and mode shapes), as well as the type of non-linearity, apgdd onx, which is the only free parameter
related to the geometry of the shell. The two other parametesindes. appearing in Eq. (70) are equal
to:

K (72)

N
€q:12(1—y )E:
Their subscripts comes from the fact that they balance otigpty the quadratic and the cubic terms in
the non-linear ordinary differential equations governing dynamics of the problem (see Eq. (75)).

12(1 = °)WE, e.=12(1 —1v?). (72)

3.3.2 Linear analysis

All the analysis is here performed for a free-edge boundangdition. It is derived by vanishing, at the
edger = 1: the membrane forces, the bending moment, the twisting moarel the transverse shear
force. They are not recalled here for the sake of brevity,itkerested reader can found the complete
expressions in [47, 53].

The linearized equations of motion are analyzed to derigecibenmodes and eigenfrequencies of
the problem, as a function of the geometry. The eigenmodetharsolutions of:

AAD + YA — 2D =0, (73a)
AAT = Ad. (73b)

where® refers to the eigenmodes of the transverse motiorlatalthose of the membrane motion. The
coefficienty = 12(1 — v?)x is the only parameter of the linear problem. All the studylddave been
realized by takingy as the geometrical parameter, as it is sometimes done hyugaauthors [16, 18].
However, the results will be presented as functions,oh order to set apart the material property which
appear through the Poisson ration the expression of. In the remainder of this study; is kept
constant av = 0.33.

Transverse and membrane mode shapes are numigred and ¥, .,y wherek is the number of
nodal diameters and the number of nodal circles. Axisymmetric modes are suchitha0. Fork > 1
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Figure 13: Three representative mode shapes of a circuterispl thin shallow shell with free edge:
axisymmetric mode (0,1), purely asymmetric mode (2,0) anegtdhmode (1,1).

(asymmetric modes), the associated eigenvalue has a licitlfipf two, so that for each eigenfrequency,
there are two independent mode shapes, called prefereatiijurations or companion modes. Among
these modegurely asymmetric modgsuch that > 2 andn = 0) are distinguished frormixed modes
(such thatt > 1 andn > 1). Figure 13 shows representative pictures for each of tlee thistinguished
family. Mode (0,1) is axisymmetric, mode (2,0) is a purelyrametric one while (1,1) is a mixed mode.

The complete linear analysis is provided in [47]. It showat &l deformed shapes, except membrane
mode shapes for purely asymmetric modes, have a negligiglerdlence on the geometrical parameter
x. This is illustrated in Fig. 14, showing the profile fore [0, 1] of two different modes®, ), the
first purely asymmetric transverse mode, dnd ), the first purely asymmetric in-plane mode, for large
variations of the aspect ratiy R between 0 and 0.6 (remind that the shallowness asummptipiiesn
a/R < 1). The dependence df, ) with the geometry is very slight, and this kind of behaviciaiso
found for all transverse modes, all in-plane modes exceqlypasymmetric ones.

1 1
0.8 08 a/R<0.01
2 2
S 06 a/R<0.01 S 06 \ \
o o
& &
8 04 > 04 a/R=0.6
0.2 0.2
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Radius r [adim] Radius r [adim]

Figure 14: Profiles of theoretical asymmetric (2,0) modepeh#or several values of a/R between 0 and
0.6: (left) transverse mode and (right) membrane mode.

On the contrary, the eigenfrequencies dependence on thetaiafios, represented on Fig. 15, shows
a different behaviour, which leads to classify the modes in families. The first family contains the
purely asymmetric modes, since their eigenfrequencigdajisa slight dependence on curvature. The
second family contains axisymmetric and mixed modes. Thews huge eigenfrequency dependence
on curvature.
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Figure 15: Dimensionless natural frequencigg of the shell as a function of the aspect ratipfor
v = 0.33.

3.3.3 Modal expansion

The complete non-linear equations of motion (70) are ptegtonto the natural basis of the transverse
eigenmodes. The displacement is thus written as:

+oo
w(r,0,6) = X,(t) @p(r,6), (74)
p=1

where the subscript refers to a specific mode of the shell, defined by a co@ple:) and, ifk # 0,

an additional binary variable which indicates the preféatrconfiguration consideredife or cosine
companion mode). The modal displacemekijsare the unknowns, and their dynamics is governed by:
Vp>1:

. +00 400 +00 400 +00
Xp+wpXp+eg > > ghXiXj ey > Y WL XiX; X, = 0. (75)
=1 j=1 i=1 j=1 k=1

The expression of the non-linear coefficients are:

+oo
9 = —// O,L(®;,W;) dS — %Z %// L(®;, ®;)Ty, dS// ®,ATY, dS, (76)
SL h=1 Eb SL SL
11
hey, = 52 —4// L(®;, @)y, dS// ®,L(®y, Yp) dS. (77)
b=1 gb S1 S1
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The Y, as well as its associated zefp, are defined in [47].S, is the domain defined byr, 0) <
[0 1] x [0 27].

Now that the PDE has been reduced to nonlinear oscillatoatemmns, the formalism of NNMs and
normal form can be applied to derive the type of nonlinedidtyeach mode of the shell. The type of
nonlinearity is dictated by the sign of:

T, = [3(AE  +ech

ppp

2
8w2 bow) T Wy Bl (78)

where the expressions fet},, and BS,, are given as in Eq. (61):

+oo 2
2w —w
Abpp = Z l (gpl + glp)gpp’ (79)
p

Before showing the results, two important comments arelwmentionable:

e The nonlinear coefﬁcientgﬁ’j and h’i’jk shows a very slight dependence on the curvature of the
shell. This is the consequence of the slight dependencesahtide shapes with the aspect ratio,
as the non-linear coefficients are computed from integnatslving the mode shape functions (Eqs
(76-77)). Hence the main effect of the shell's geometry anttend of non-linearity is described
by the relative variations of the eigenfrequencies, showfig. 15.

e As it appears in Egs (79-80), when studying the trend of moeatity of thep mode, one has
to keep all the modes such thaj},, # 0, andg}, # 0 or g, # 0. As shown in [47], a number
of coefficients{g;; },. j>1 are equal to zero due to the rotational symmetry of the stractThe
conditions for these quadratic coefficients to be non-zegeapressed in terms of the number of
nodal diameterg; andk, of thel andp modes. They read:

(i) gb, # Oif ky € {2k,,0}.
(i) g% #00rgh #0if ky € (ki + kp, ki — ky|}.

These rules show that two classes of modes have to be retaimen studying the type of non-
linearity of thep™ mode: axisymmetrick{ = 0) as well as asymmetric modes having twice the
number of nodal diameters;(= 2k,). No other mode has an influence on the type of non-linearity.

In the remainder of the studyy will refer to the number of modes retained in this specificsatb
composed of the pertinent ones with respect to the type cfinearity.

3.3.4 From circular plates to spherical-cap shells

The type of nonlinearity is now computed for three differemdes of the shell, representing each of
the three families. A purely asymmetric mode, (4,0), is Bedected. The variation df 4 o) as function

of k is shown in Fig. 16. According to the rules underlined fomtration, only axisymmetric modes
and asymmetric modes with eight nodal diameters, must ntako account. Fok=0, the shell is a
perfect circular plate. In this case the leading cubic coieffit is positive, so that a hardening behaviour
is at hand. The dashed lin&/(= 1) shows the prediction given by considering only the lineadm
for computing the type of nonlinearity. The correct preidiatis severely affected by the presence of
2:1 internal resonances, creating discontinuities. Fadend,0), only two 2:1 internal resonances are
possible with the modes that could interact to influence yipe tof nonlinearity: with mode (0,2) at
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hardening behaviour

2:1 res. with (0,2)
with (0,1)

softening behaviour

1 1 1
0 100 200 K 300 400

Figure 16: Type of nonlinearity for mode (4,0) as functiortted geometrical parameter N=1: system
truncate to linear mode (4,0). N=2: truncation includingdj4and (0,1). N=3: (4,0), (0,1) and (0,2).

k = 36.91, and with mode (0,1) at = 174.1. In conclusion for this purely asymmetric mode, one can
underline the fundamental importance of axisymmetric msdde an accurate prediction of the type of

nonlinearity. Secondly, hardening behaviour is observd the 2:1 resonance with mode (0,1), where
softening behaviour settles down. Finally, The type of tinearity tends to zero astends to infinity.

0.5

(0.1)

0.25-

-0.25

softening behaviour hardening behaviour

1 1 1
50 100 150 200 250
K

Figure 17: Type of nonlinearity for mode (0,1) as functiorttud geometrical parameter N=1: trunca-
tion containing only mode (0,1). N=7: converged result viittiusion of the seventh first axisymmetric
modes, from (0,1) to (0,7).

The case of an axisymmetric mode is how considered with mdde. (The coupling rule§) and
(i), indicate that only axisymmetric modes have to be kept. Thmmifference with the previous case
is the behaviour of the eigenfrequencies with respeet. tds it can be seen on Fig. 15, axisymmetric
eigenfrequencies increase with curvature. Hence, antynffi2:1 internal resonances are now possible,
with all the other axisymmetric modes.

The result of computation is shown on Fig. 17. It can be seanttie effect of the geometry —the
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increase of— is much more pronounced than for the asymmetric mode: tted rardening behaviour
(x = 0) becomes softening at = 1.93, and not because of a 2:1 internal resonance. Two resonances
leading to a change in behaviour, are then showrk at 35.97, where the following relationship is
fulfilled: 2w 1) = w2 = 43.21. Then atx = 230.1, where 2:1 resonance occurs with mode (0,3).
These 2:1 resonances lead to a return to hardening behadiowever, it occurs on a very little interval,
which is already negligible for the resonance with (0,2§] eampletely negligible for (0,3). The next 2:1
resonances (with (0,4) at= 756.9, with (0,5) atx = 1871.5 ...) occur on intervals which are always
smaller and thus are not shown.

Single-mode prediction is also shown on Fig. 17. Althoughat resonances are missed, the general
behaviour is correctly predicted: change from hardeningaftening due to curvature is found rat=
1.95 instead ofk = 1.93, and the asymptotic behaviour, which becomes neutral whends to infinity,
is recovered. These results show that for the specific cadediindamental axisymmetric mode, the
single-mode approximation, used in the precedent stutiisbp, 41, 56], predicts the essential features,
in spite of a too severe truncation.

3T,
gl @y
©
<
[}
o)
o)) 0.25 R\ ]
£ \
c \
% N
E ~ - N=1
o [t ettt s el e =
@2/ [\©3 @3)/ ©4)
5
2
>
© N=17
< | -025 T
© L\gd/ [
(=]
£
c
g ﬁ
2 L ‘ : ‘

Figure 18: Type of nonlinearity for mode (1,1) as functiortted geometrical parameter N=1: trunca-
tion including only linear mode (1,1). N=17: converged tescluding modes (1,1), (2,0) to (2,4) (with
both configurations), (0,1) to (0,5).

The case of a mixed mode, namely (1,1) is presented on FigAd &r the axisymmetric modes, the
effect of geometry is important and leads to a change of betafor a very small value of the aspect
ratio: x = 5.3. Then 2:1 internal resonances occurs, with modes (2,3), (@,3), (0,4), ... Their number
is unlimited, as for the axisymmetric case. The change chtielr occurs on very small intervals. The
first one, due to 2:1 resonance with mode (2,2), is hardlyigibtg, and the others have no chance to be
experimentally measurable. It can be thus conclude thaptan a very small intervak(< [0, 5.3]),
mode (1,1) behaves in a softening way.

The single-mode approximation is also shown on Fig. 18. dtjts a hardening behaviour which
becomes neutral whentends to infinity. The converged result is obtained #ork= 17 modes, namely :
(1,1); (2,0) to (2,4); (0,1) to (0,5), and shows that, cantta the precedent cases, coefficiépt ;) tends
to a finite value whem tends to infinity. Hence the behaviour remains softeningdoes not becomes
neutral for large values of the aspect ratio.

3.4 Influence of the damping

This subsection is devoted to studying the influence of thepilag on the type of nonlinearity. This
problematic could appear unusual or ill-posed, becausgygeeof nonlinearity is generally defined for
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conservative systems through the backbone curve. Howawegre general view is needed to tackle
the cases of forced responses and/or dissipative fredatieris, where the oscillation frequency also
depend on vibration amplitude.

As it has been shown in subsection 2.8, the normal form thedltyinclusion of damping allows ex-
tending the results continuously from conservative toig@s/e systems. Moreover, a clear dependence
of the coefficients on the damping ratios, has been unddrlifibe aim of this subsection is thus to show
how this dependence can influence the type of nonlinearity.

For that purpose, let us consider the two-dofs system, E5, With inclusion of damping terms.
The motions on the first NNM are governed by the dynamicalcedwequation:

Rl + W%Rl + 2£1W1R1 + (h%ll + A%ll) R;I) + BllllRlR% + CllllR%Rl =0. (81)
and the type of nonlinearity is given by the signigf

3(AL, + ht ) +w?Bh
Flz ( 111 éuljlg 1-111 (82)
1

As a consequence of the particular behaviour ofdthg and Bi,, with increasing values &, the
type of non-linearity may change with increasing dampinigufe 19 shows, for the two-dofs example
with parameter values; = 3, wo = 5.4, and&; = 0.001, that whené, increases (simulating the
presence of a slave mode which is more and more damped) #hettypn-linearity of the first mode may
be affected and change from hardening to softening behavinuhis case, it happens fgs = 0.081,
so that the ratio of the two modal damping is equaltg’é; = 81.

hardening behaviou

softening behaviour

Figure 19: Type of non-linearity';, defined by Eq. (82), for increasing values&f The behaviour
turns from hardening to softening type = 0.081. Other selected values arej = 3, ws = 5.4, and
& = 0.001.

Another case is studied in Fig. 20, where now the two lineadahdamping coefficient§; and
& vary of the same quantity, so that the ragig¢; is kept constant. This more realistic case could for
example simulate a structure whose global damping is raldeck again, it is also observed that a global
increase of the amount of damping have a significant effethetype of non-linearity. From these two
examples, it is concluded that the damping tends to enhartéasours the softening behaviour.

This particular effect of the damping on the type of non4iriy can thus significantly change pre-
dictions based on the undamped system. Let us now observéhbdype of nonlinearity is modified on
a section of the map of nonlinearity as function of the twaapagters ,, w>), shown in Fig. 10. More
precisely, the liness=2 and varyinguy, already shown in Fig. 11(a), is now considered, for a fixddeva
of £,=0.001, and increasing values@f The results are given in Fig. 21.
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softening behaviour

0 0.1 0.2 0.3
&

Figure 20: Type of non-linearity'; for increasing values of the global damping in the systene fiiro
modal damping values here are equéj = &, = £. Other selected values arej = 3, wo = 5.4.

When damping is not considered, the type of non-linedritglisplays a discontinuity at the internal
resonance value whete, = 1, ie. where 2:1 resonance occurss; = 2w;. At this discontinuity
point, the behaviour changes abruptly from softening taéaing type. The discontinuity is due to the
presence of internal resonance which leads to small deradongin the solution. As already argued, in
a small intervall near the 2:1 internal resonance poingleimode solutions do not exist anymore, and
the concept of the type of non-linearity loses its meaning.

hardening behaviour

softening behaviour

0 0.5 1 001 15 2 25
Figure 21: Type of non-linearity for different values &f, illustrating the fact that the discontinuity at

the 2:1 internal resonance is smoothened by increasingatmpidg of the slave oscillatow, = 2 and
&1 = 0.001.

Here, it is shown that taking into account the whole dampifihe structure smoothens the discon-
tinuity. For increasing values @b, Figure 21 shows that the region of hardening behaviour #fte2:1
internal resonance decreases, and can even disappedr, halpigens here far, = 0.1. This is a reflec-
tion of the fact that increasing, changes the second eigenvah.? = —&ows +iwg/1 — &2, so that
the eigenvalues of the damped system stem apart from theams® condition so that the discontinuity
due to the small denomitar smoothens.
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From this study, it can be concluded that a careful prediaicthe type of non-linearity must include
the damping in the analysis. Examples on continuous stegtiimperfect plates dans spherical shells),
are shown in [52], underlining that the results obtained lvéith the two-dofs system generalize.

3.5 Closing remarks

A general strategy has been proposed for deriving the typ@wlinearity of an assembly of nonlinear
oscillator equations, based on normal form theory and témtuto a single NNM. With this method, the
same complexity is at hand as compared to predictions giyarsimg a single linear mode, as a single
oscillator equation is used for the prediction, so that @il results are derived without resorting
to time-consuming numerical simulations including tNeoscillator equations. As shown by several
authors, see.g.[33, 31, 32, 55], using a single LNM can lead to erroneousltesuthe prediction. The
reason is the non invariance of the linear eigenspace, amsindhe previous section. The effect of the
other modes on the type of nonlinearity, has been undetlimeplarticular the presence of 2:1 internal
resonance.

This section has revealed that using NNMs for reduced-ontiedeling appears as an appealing
method. Indeed, one is at least ascertained to predict theatdype of nonlinearity with the reduced
model. For the last section of this lecture, the focus is endirivation of ROMs for structural systems
in forced vibration. The case of harmonic forcing, in theinity of one eigenfrequency, is studied.
This will allows to demonstrate the ability of ROMs based oNNis to properly recover a complete
bifurcation diagram.

4 Reduced-order models for resonantly forced response

The goal of this section is to use the reduced-order modediirategy based on NNMs and normal form
theory, in order to compute the harmonically forced respafghin structures, vibrating at large ampli-
tudes and excited in the vicinity of one of its eigenfrequenfpplications to shells will be specifically
shown, and a comparison with the Proper Orthogonal Decoitigro$P OD) method will highlight the
benefit of using NNMs in this case. In the first subsectiondiwévation of the ROM is briefly reviewed
and the advantage of using the normal form method includiegdamping is shown on a two-dofs ex-
ample. The presentation in subsection 4.1 recalls someeaketults published in [50]. Subsection 4.2
selects one of the examples shown in [51] for illustratiombsction 4.3 with application to a closed
circular cylindrical shell is taken from [50], while the cgarison with the POD method in the last
subsection is published in [8].

4.1 Derivation of the reduced-order model

The previous developments have clearly highlighted thegdmethod for deriving the ROM, shown
schematically in Fig. 8. From a Partial Differential Eqoati the first step is a projection onto the basis
of the linear eigenmodes. The second step is to use the ntramaform in order to express the dy-
namical equations in an invariant-based span of the phase sfhe last step consists in truncating the
system by keeping the resonnant NNMs. All the examples usesider the case of a harmonic external
forcing, the frequency of which is in the vicinity of an eidequency of the selected structure. In the
simplest case, when no internal resonance is present arhergjgenfrequencies of the shell, only the
NNM whose eigenfrequency is near the excitation, has to peikehe truncation, so that a very simple
ROM, consisting of a single oscillator-equation, is dediv&his case will be illustrated in subsection 4.2
with a doubly-curved panel. If internal resonance exisisntall the NNMs, the frequencies of which are
contained in the internal resonance, must be kept in thedtion. This case will be illustrated in sub-
section 4.3, where the ROM of an asymmetric mode of a clogedlar cylindrical shell, is considered.
Due to the rotational symmetry of the circular shell, asyrirmoenodes appears by pairs of companion
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modes, in the same manner as what has been observed in rciptatizs and shells in subsection 3.3.
Hence a 1:1 internal resonance is present and two NNMs must&ieed in the truncation.
Two main assumptions are thus retained in the derivatiohe@ROM:

e A third-order asymptotic expansion is used for the normahdgform. Hence all the results are
a priori accurate up to order three. In particular, the psegomethod shows the best results for
systems containing quadratic and cubic nonlinearitiesh@gorrection brought by the quadratic
term on the cubic nonlinearities is well taken into accoutr systems containing only cubic
nonlinearity, the improvement as compared to linear modiecttion, is important for the trans-
formation only, but not for the dynamical solutions. Whemsidering large amplitude vibrations,
this third-order limitation can become problematic in terafi accuracy of solutions.

e Application of the proposed ROMs to real situations leadstwsider external forces applied to the
structure. On the mathematical viewpoint, external foroest be taken into account in the normal
form computation, as proposed for example in [15]. Howetexershoots the mark of the present
study, since the formulation must turn to definitiondiofe-dependeritivariant manifolds. In the
mechanical context, time-dependent manifolds have be@patede.g. in [24], requiring a huge
computational effort, since the numerical procedure magtlpeated for each forcing frequency.
Moreover, a consequence of the numerical procedure is liBateisults are no more expressed
under a differential formulation, which renders paraneettudies numerically expensive.

In this study, the ROM will be obtained by adding the exteffioate directly to the normal form.
The main advantage is that the calculation derived in secias intrinsical to the structure,
whereas rigorous computations including the externakfoncist be done for each type of forcing
studied. Secondly, the perturbation brought by the extdanee onto the normal form is at least
a second-order effect [21]. Hence, this first approximatidthbe used to derive simple ROMs,
and the results presented in the next sections shows thlitatjua and quantitative results are
generally obtained.

Before applicating the method to thin shells, a justifiagafior using the normal form with damping is
in order. Indeed, the same reasoning made for the extemahdocould also have justified a more simple
treatment of the damping terms. The ROMS could have been fouithe system without damping,
using the formulas exposed in subsection 2.4, and then dangrid external forces could have been
added directly to the normal form. This method will be coirtled "conservative NNM” method in the
following, and will be compared to the second strategy, &tridamped NNM” formalism, where the
damping is included in the normal transform, as shown inectien 2.8. For that purpose, the two-dofs
example consisting of the mass connected to the two nonmlisangs, is used for illustration. The
equations of motion, given in Egs. (42), are completed byraddamping and forcing terms, and reads:

Xl + W%Xl + 2£1W1X1 + —1(3X12 + X22) + W%XlXQ + )(1()(12 + X22) =N COS(Qt),

(83a)

w? wi + w3
2

2 2
LY vy (X2 4+ X2) =0, (83b)

2
. . w
Xy +wi Xy + 26w X + 2 (3XG + XT) +wi X1 Xp +

The forcing is considered on the first mode only, and the atioit frequency is such th& ~ w;.

Three different truncations, having the same complexitsirigle nonlinear oscillator equation), are
used as reduced-order models. The first one is the most siampleconsists in keeping only the linear
mode by imposingXs = 0:

2 2
wi +w
1 2 )(3
1

. . 3w?
X + WX + 26w X, + TlX% + 5

= F} cos(Qt) (84)
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The second ROM, following the "conservative NNM” methodfdsind by subsituting in Egs. (45) and
(61) the coefficients by their expressions. It reads:

w —2wf | (2w] —w)
2 2(wd — 4w?)

2| p3 w3
w2:| Rl-l- |:—3 + ﬁ

R +w%R1+2§1w1R1 +
wy — 4wy

] RIR; = F cos(Qt).
(85)

Finally, the third ROM is found by applying the "damped NNMtategy. It is given by Eq. (81),
which is here recalled fgr=1.:

where Al,;, B};; andC{;; have not been replaced by their complete expressions foptréicular
problem as their expressions are now too lengthy. Note hemtat, as compared to (85), these coef-
ficients now depends explicitely on the damping. In Eq. (88)dnly term producing an energy loss is
261w Ry, whereas in (86), the additional ter@i{,, R? R, is also dissipative, and depends Qrandés,

so that a better approximation of the whole damping in théegyss awaited for the second ROM based
on "damped NNMs”.
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Figure 22: Frequency-response curves (maximum of the imdinate X; versus excitation frequency
Q). Thick solid line : reference solution. Thin blue soliddir’damped NNM”, Eq. (86). Dash-dotted
green line : "conservative NNM”, Eq. (85). Magenta dashtekbthin line: linear mode truncation, Eq.
(84). Selected values) =2, wy=4.5,£,=0.001,£,=0.01, F,=5.10"*.

The performance of the three ROMs are compared on Fig. 22renthe parameter values of the
system have been setdg=2, wy=4.5,£,=0.001,£,=0.01, so as to simulate the presence of a damped
mode and its influence on the frequency-response curve dirgiemode. The forcing is such that
Q ~ wy, and the amplitude is set @=5.10"* for that first simulation. The solutions of each model
is obtained by continuation of periodic orbits, and thewafe AUTO is used for that purpose. The
reference solution is of course obtained with the complgsées, Egs. (83). One can see that the linear
mode truncation predicts an incorrect hardening behaviauthe line of the results already obtained
in the precedent section, and is thus not reliable. On therdtand, the two ROMS based on NMMs
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predict the correct type of nonlinearity. The ROM constedctvith the "conservative NNM” method

underestimates the damping in the system, and gives a maxamplitude which is slightly larger that

the reference solution. This means that taking into acconht 2¢,w, R, as dissipative term in the

ROM is an incorrect estimation of the whole damping presetiié system. The ROM constructed with
the "damped NNM" method gives a very satisfactory resulte Blight differences observed with the
reference solution can be attributed to the two main assangptnade in the construction of the ROM,
i.e. the third-order asymptotic development and the time-iedepnt approximation of the manifold.

0.12

:
/
01f cons. NNM b
- / linear mode
—~~ / ﬁ
3 /
C o0.08F ,
>
Cs :',
- ~
0.06
damped NNM/ =
0.04 -
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0
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Q

Figure 23: Frequency-response curves (maximum of the imdinate X; versus excitation frequency
Q). Same as Fig. 22, except the amplitude of the forcing whaskelbeen increased’; =1.1073.

These trends are enhanced when the amplitude of the forsiimgreased td;=1.10"3, as shown
in Fig. 23. In this case, the two ROMs: linear and "conseveaiNM” give unaceptable result. The
ROM constructed with the "damped NNM” method shows a corbettaviour, even though the slight
discrepancies already observed f§r=5.10"* are now clearly observable.

In the remainder of this section, the reduced-order mogedirategy is applied to thin shells includ-
ing a priori an infinite number of dofs. Truncations to onewo tNNMs are realized. As numerous
modes, with increasing values of their modal damping factdli be gathered in a single NNM, the
"damped NNM” strategy is systematically used. The examglesvn herein underline the importance
of having a correct estimation of the damping onto the mdshifo

4.2 Application : the case of a doubly-curved panel with in-pane inertia

A hyperbolic paraboloid panel with rectangular base, reféto as the HP panel in the following, is
first selected. Frequency response curves, in the vicifiig dlundamental mode, will be computed for
different ROMs. A sketch of the shell is shown in Fig. 24. Thevdinear coordinate system is denoted
by (O, z1, x9, z), with the originO at one edge of the paneR; and R, (assumed to be independent
of x1 andzx,) are the principal radii of curvature,andb are curvilinear length, ant is the thickness.
The radii of curvature are such th&; = —Ry. For the numerical results, dimensions of the panel are
selected ase = b = 0.1 m, R, = —R, = 1 m, and thicknesé = 1 mm. The material is linear elastic
with Young’s modulustl = 206.10° Pa, density = 7800 kg.m~2 and Poisson’s ratio = 0.3.
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Figure 24: Geometry and coordinate systems for the selstieits.

Donnell's non-linear shell theory is used for expressirgkimematics of the shell. This modelisation
is of larger extent than the von Karman model presentedisection 3.3. Indeed, Donnell non-linear
shell theory do not neglect the in-plane inertia, and cas theiused with confidence for non-shallow
shell and on a wider range of displacement amplitudes (ardfarger range of midfrequencies). The
membrane displacements are denoted bydv, and the normal displacementis Boundary conditions
are simply supported.

The drawback of retaining in-plane inertia is that adddiodegrees of freedom must be taken into
the expansion as a consequence that the simplified Donsk#dkow-shell formulation cannot be used.
Secondly, the computation of the eigenmodes can become difficlt. For these reasons, ad-hoc
expansion functions are here used for discretizing thelpnabThe basis functions used here are :

¢£;‘7)n(ac1, x9) = cos(mmxy/a)sin(nmxs/b), (87a)
¢£§?n($1, x9) = sin(mmx1/a) cos(nmxsa/b), (87b)
gb%%(wl, x9) = sin(mmx1/a) sin(nwze/b). (87¢)

The three displacements are denotedwagor transverse motions; andv for in-plane motions. They
are expanded as:

Muy,Nuy

w(@y, w2, t) = > (S5 (w1, 32), (88a)
m,n=1
My,Ny

vz, e t) = Y V(D) (21, 22), (88b)
m,n=1
My, Ny

w(xy, xe,t) = Z W (1)) (1, 229). (88c)
m,n=1

The number of basis functions in each direction is free aveiged by the intege®l,,, N,, M,, N,, M,,
andN,,.
Let q be the vector of generalized coordinates, gathering tegetlhthe unknown functions of time
introduced by the expansions given in Eqgs. (88):
A= [Umn> Vmn> Wmn)', m=1,...M,, My, My, n=1,..Ny, Ny, Ny. (89)
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In the remainderP refers to the dimension af, i.e. the number of generalized coordinates used for
discretizing the shell. The generic elemenigaf denoted byy,. Finally, in the three considered cases,
the result of the discretization gives a set of coupled moeal oscillator equations to solve. They writes:

P P P
Gp + 26pwpp + Y 2Fai+ > 2qigp+ Y 2 aigiae = fpcos(wt). (90)
i=1 ij=1 i k=1

Modal damping in Eq. (90) is considered in the classical fa¢puw,q,, andf = [f; ... fp]? is the vector
of the projected external forcing considered.

The reference solution is obtained by simulating Eqs. (B0).deriving the bifurcation diagram for
the panel (or the frequency response curve in forced vidrgta numerical solution is obtained by using
a pseudo-arclength continuation method implemented isdftevare AUTO [12]. The convergence of
the solutions with respect to the numbk@rof generalized coordinates retained has already been done
in previous studies. It has been shown that, for the HP pdhet, 22 basis functions were needed for
obtaining convergence [2]. As a consequence of this largeeyaomputation time associated with the
numerical simulations with AUTO for obtaining a single ftemcy-response curve are large.

The first idea for reducing the size of the system is to useitieal normal modes (LNMs). Let
L = (2], be the linear part of Eq. (90), arfd the matrix of eigenvectors (numerically computed) of
L such thatP~'LP = A, with A = diag [w]ﬂ, andw, the eigenfrequencies of the structure. A linear
change of coordinates is computegd—= PX, whereX = [X; ...XP]T is, by definition, the vector of
modal coordinates. Application @& makes the linear part diagonal, so that the dynamics can eow b
expressed in the eigenmodes basis, and r&ads, 1, ..., P:

P P
X+ 20wy Xp +wpXp+ Y XX+ D> W XXX, = F, cos(wt). (91)

i,7=1 i,j,k=1

The application ofP let the viscous damping unchanged, @d P~!f = [F} ... Fp|! is the new
vector of modal forces. The quadratic and cubic non-lineapting coefficients{gfj} and{h’i’jk} are
computed from the{zf”j} and {zf”m} appearing in Eq (90) with matrix operations involvil®y The
dimension ofX is P, but truncation can now be realized by keeping any numbeiNM§&. Let Pr s
be the dimension of the truncation operatedXin Convergence studies will be realized by increasing
Py from 1toP. Since the LNMs possesses some interesting propertiesuiicydar orthogonality),
it is awaited to obtain convergence By vy < P.

Finally, from Egs. (91), the NNM method with normal form ispdipd to obtain a more severely
reduced order model. For selecting the number of NNMs fddimg the ROMs, one needs to know the
eigenfrequencies in order to test the presence of inteesahance before proceeding. With dimensions
and material properties as chosen, the fundamental freguem88.1 Hz. Nondimensionalizing the
frequencies by the first one, it results that the list of fextgies are, for the six first: 1, 5.18, 5.18, 9.01,
46.22, 78.05. The fundamental mode (simply supported baryncondition) appears as a "breathing
mode” without nodal lines. Then a degenerate eigenvalue mitltiplicity two is observed, correspond-
ing to two modes with a nodal line either on the or x5 direction. In particular no simple internal
resonance exists between the first mode and the next. Heacgntiplest model, including a single
NNM, is selected and should be able to catch the main featditbe dynamics of the resonant response.

The response of the HP panel to harmonic excitation in thiaitgicof the first eigenfrequency is
numerically computed. The convergence of the solution bag lsarefully studied in [2] for an excitation
amplitude f of 4.37 N applied at the center of the panel. It has been shban22 basis functions
were necessary to obtain convergence. More precisely, éherglized coordinates retained for this
reference solution arevy 1, wi,3, W31, W33, U1,1, 3,1, U1,3, U3 3, U1 5, U5 1, U35, U5 3, U5 5, V1,15 U3 1,
V1,3, V3,3, V15, Us,1, U35, Us3, Uss. The damping parametgl, has been set to 0.004 for each mode:
Vp = 1...22,(, = 0.004.
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Figure 25: Frequency-response curve for the HP panel, hacaity excited in the vicinity of the first
eigenfrequency;. The reference solution is compared to the solution givekdmping a single linear
mode (LNM) or a single NNM. The excitation amplitudefis= 4.37 N. Point (A), withw = 1.3wy, is
used for time integration, see Fig. 27.

Figure 25 shows the frequency-response curve for the refersolution, with 22 basis functions. As
a single NNM ROM is awaited to give good results, it is decittedompare two ROMs having the same
complexity (a single nonlinear oscillator equation). Thstfone is obtained by keeping in the truncation
only the first LNM (P, vy = 1). Eqgs (91) are restricted to the first one :

Xl + 2C10.)1X1 + w%Xl + ghX% + hthig’ =N cos(wt). (92)

Branches of solution are numerically obtained by contiiomatvith AUTO, then the original coordinates
are recovered viay = PX, where, inX, only the first coordinateX; is different from zero.

The second reduced-order model is obtained by keeping gteNiMM: Egs. (52) are truncated by
letting R, = 0, Vp = 2...22. The dynamics onto the invariant manifold is then governed by

Ry +2¢iwi Ry + wiRy + (hiyy + Afyy) RS + Bl RiRT + C11 RiRy = Fj cos(wt). (93)

Eq. (93) is solved numerically with AUTO, then one uses Ef9) o come back to the modal co-
ordinates, and finally the matrix of eigenvect@®sallows reconstitution of the amplitudes in the basis
of selected projection functions. Thanks to the non-lingsture of the change of variable (39), all the
modal amplitudes are non-zero.

Figure 25 shows the main coordinate ;, having the most significant response. One can observe
that the nonlinearity is of the hardening type, and that thelaude of the response, of the order of two
times the thickness, is large. For the ROMSs, it is observatitinereas reduction to a single linear mode
gives poor result, reduction to a single NNM give a satisfgctesult, with a slight overestimation of the
maximum vibration amplitude.

Moreover, as shown in Figure 26, the reduced model compdszdingle NNM, thanks to the non-
linear change of coordinate, allows recovering all the otio®rdinates that are not directly excited. Fig.
26 shows the six main coordinatés, the first four coordinates in transverse direction,;, ws 1, w1 3
andws 3, as well as the first two longitudinal coordinates; andv, ;. It is observed that with the NNM
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Figure 26: Maximum amplitude of the response of 6 genemlimrdinates versus excitation frequency,
for an excitation amplitude of = 4.37 N. Reference solution (thick line) is compared to #aiction to
asingle linear mode (LNM) and a single non-linear mode (NN@d): maximum ofw; ;. (b): maximum

of ws 1. (C): maximum ofw; 3. (d): maximum ofws 3. (€): maximum ofu; ;. (f): maximum ofv, ;.

ROM, energy is recovered in all the coordinates, with a gquut@imation of the original amplitudes.
On the other hand, for the model composed of a single lineatemmon-zero amplitudes are recovered
only onwy 1, u1,; andvy 1, as these three coordinates are linearly coupled to creatiérst eigenmode
described byX; which is simulated. But a vanishing response is found with EtNM ROM for ws 1,
w1,3 andw373.

This first result emphasizes the main characteristic of tN&INROM : the geometrical complexity
due to the curvature of the invariant manifold, is first cotepin the non-linear change of coordinates.
Once the dynamics reduced to the manifold, a single osmillequation is sufficient to recover the dy-
namics. Then, coming back to the original coordinates allogcovering energy onto the slave modes
thanks to the non-linear projection.

The time solutions for the four most significant coordindgteshown in Fig. 27. Once again, the
reference solution is compared to the two reduced modelgposeat of a single linear and non-linear
mode. Time integrations have been performedffer 4.37 N andw = 1.3w; (Point (A) on Fig. 25).
Whereas the reduction to a single linear mode is not acceptidle solutions provided by a single NNM
are very good. Despite the fact that only one oscillatoragiqn is simulated, a variety of complex signals
are recovered thanks to the non-linear change of coordinate

The convergence of the solution with an increasing numbémifls is shown in Fig. 28 for the
excitation amplitude of 4.37 N. It is found that the convercgeis very slow : 15 LNMs are necessary to
obtain an acceptable solution. The solution with 11 LNMsualiatively different from the converged
solution with a strange loop appearing in the frequencyaesg, and is thus not acceptable. Hence a
very slow convergence with respect to increasiigy,, is found, and using the linear normal modes is
not very favourable as compared to the projection functissed. On the other hand, it has been found
that increasing the number of NNMs kept in the truncation @s E52) do not change anything in the
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Figure 27: Time-domain response of 4 generalized cooretinat the HP panel, excitation frequency
w = 1.3wq, amplitudef = 4.37 N. Reference solution (thick line) is compared to tidMNsolution (thin
line), and the LNM solution (dashed line).

solution : the added NNMs have been found to stay with cohstaglectable amplitude, and the same
solution is found as the one obtained with a single NNM. Téia iogical consequence of the invariance
property of the NNMs. Hence the solution with a single NNMrasdo be the best ROM possible. The
only way to improve the results found here is not in incregusie number of NNMs, but in overshooting

the two limitations of the present approximation used foregating the NNMs.

Finally, the robustness of the ROMs with respect to increaie amplitude of the forcing, is studied.
Fig. 29 shows the results obtained for a lower excitation lauge: f = 2.84 N, and for a larger one:
f =6.62 N. Forf = 2.84 N, the result given by the NNM ROM is almost perfectlyncident with the
reference solution obtained with 22 basis function, whetba model with a single linear mode give
unacceptable results. For the larger amplitufle,6.62 N, the result deteriorates for the NNM-reduced
model, which is not able to catch the saturation loop foundheyreference solution at the top of the
frequency-response curve. The observation of the othedtwies (not shown for the sake of brevity)
shows that this loop reflects the fact that most of the enesgutithis point, absorbed by the higher
modes, the amplitude of which significantly and abruptlyréase. More precisely, it appears that an
internal resonance appears between nonlinear frequesfdies system. Indeed, as the frequencies vary
with amplitude, they can fulfill a resonance relationshipdaiven vibration amplitude even though the
linear frequencies are not commensurate. The phenomewargeced here for this level of vibration
appears to be of this type with an important increase of grexghanged from the fundamentally excited
modes to higher modes. Hence the reduced model should bgethemcatch this new phenomenon, but
this appears to be over the scope of the present study.

As a conclusion on the HP panel, the dynamics has been redimad22 dofs to a single NNM.
Results shows that the reduction, computed with an asyrmptapansion to approach the invariant
manifold, gives very good results for vibration amplitudgsto 1.5 times the panel thicknessBeyond
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convergence of the solution when increasifgy,. Reference solution (22 basis functions) is compared
to truncations with 1 linear mode, 5 LNM, 11 LNM and 15 LNM.
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Figure 29: Frequency-response curve for (&) 2.84 N, and (b):f = 6.62 N. Reference solution (ref)
is compared to truncations with a single linear mode (LNMJ arsingle non-linear mode (NNM).

this value, the two approximations used for generating t@#Rlo not hold anymore. On the other
hand, using truncations with LNMs did not allow substanimaprovement as compared to the selected
basis functions used for discretizing the problem.

4.3 Application : the case of a closed circular cylindrical gell

A water-filled perfect circular cylindrical shell, simplygported, and harmonically excited in the neigh-
bourhood of the fundamental frequency, is selected in amelerive a NNM-based ROM for a con-
tinuous structure. A detailed discussion on the model cafobed in [1, 6]. Donnell’s non-linear
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shallow-shell theory is used to take into account large @og® motions, so that in-plane inertia, trans-
verse shear deformation and rotary inertia are neglecteate that Donnell’s shallow-shell theory is
equivalent to von Karman model already used in subse&i8nso that the equations of motion have the
same form. For the transverse deflectiofx, 6, t), it reads:

1 0%°F 1 [0%F 0w OP’F 9*w  0*F 0*w

Ro T2\ 907 o oot omon T oz aoz|” Y

DV*w + chai + phiv = f —p +

whereD is the flexural rigidity, Young’s modulusy Poisson’s ratioh the shell thicknessi the mean
shell radiusp the mass density, the coefficient of viscous dampingthe radial pressure applied to the
surface of the shell by the contained fluid, ghi$ a point excitation, located &, ) :

f = fo(RO — RA)S(z — %) cos(wt). (95)

Fis the usual Airy stress function, which satisfies the folligwcompatibility equation:

1y, 10%w 2w \°  Pw 0w
A T KR(%@@) e RQGHQ]' (%6)

A circumferentially closed circular cylindrical shell agdrigthZ is considered. Mathematical expressions
of boundary conditions are given in [6, 7]. The containedifisiassumed to be incompressible, inviscid
and irrotational. The expression pfwhich describes the fluid-structure interaction, is giirefi].

The PDE of motion is discretized by projection onto the reltarodes basis. The reference solution,
whose convergence has been carefully verified in [1, 36hisputed by keeping 16 natural modes. The
transverse deflection is thus expanded via:

3
w(zx,0,t) = Z [Ap ien (t) cos(knb) + By, g (t) sin(knd)] sin(A,,x)

n=

3

==

4
+ Z Am-1),0(t) sin(Aam-1)7), (97)
m=1

wheren is the number of circumferential waves, the number of longitudinal half-waves (for sym-
metry reasons, only odd values are retainegl), = mn/L; A,, ,(t) and B,, ,(t) are the generalized
coordinates. By use of the Galerkin method, 16 second-atifferential equations are obtained. They
are in the form of the general equations used as the startiimy @f this study, Eq. (2). The following
correspondence between modal coordinates is uded:and B, ,, are X; and X», A3, and B3 ,, are
X3 and Xy, Ay 2, and By 2, are X5 and X, As 2, and Bs », are X7 and Xy, A; 3, and B 3, are Xy
and X9, A3z 3, and B 3, are X, and X1, asymmetric modesl; o, A3, 450 and A7 are X3 to
Xj6. Finally, modal damping is postulated.

The reference solution is obtained for the following shélk= 520 mm,R = 149.4 mm}, = 0.519
mm, E = 2.06.10' Pa,p = 7800 kg.n73, pr = 1000 kg.nT? (water-filled shell), and’ =0.3. The
excitation frequency is set in the vicinity of the fundamental mode & 5, m = 1), whose eigenfre-
quency is 79.21 Hz. Modal dampirgg,, = 0.0017 is assumed. The harmonic point excitation has a
magnitude of 3 N and is located at= L/2 andd = 0. Finally, the displacements are normalized with
respect to the thickneds and the time with respect to the period of the first eigenfeegyw; ,,. The
frequency-response curves are numerically obtained wélsoftware AUTO.

The response of the shell in the vicinity of an asymmetric ensdnvestigated. As a consequence
of the rotational symmetry displayed by the shell, asymimetodes appears by pairs, and 1:1 internal
resonance exists between each pair of companion modese Hbaaninimal model which could capture
accurately the dynamics is composed of two NNMs. The ROM ibay applying the non-linear
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change of co-ordinates, Eq. (39), to the dynamical systemshat after this operation, the dynamics
is written in terms of the new coordinatég,, S,) that are the continuation of the linear ones. Thanks
to the invariance property, the truncation can now be dorleowt losing important informations. Two
couples of master coordinatés?;, S1) and(Rz, S2) are selected, which are related(té, ,,, Al,n) and
(Bi.n, Bi.n)- All other normal coordinategR,, S,), for p > 3, are set to zero. The normal dynamics
with these two master coordinates derives from Eq. (52):hasgjust to write this system for= 1, 2.
The dynamics onto this four-dimensional invariant maifisl thus governed by:

Ry + iR +261w01 Ry + (Al + hiy) R} + B%anR12

+ (A1 + Algy + higg) RIRS + 3%22R1R22 + ByiaRo R Ry

+ Cly RIR) + (Clyy + C315) RiRy Ry + Cop  RIRy = f cos(wt) (98a)
R + wiRy+26sw2 Ry + (A395 + h390) R3 + B2222R2R22

+ (AT1p + 4311 + hi1p) RoRY + 3511R2R12 + Bi1oRi R Ry

+ C3R3Ry + (C3yy + C3))R1Ro Ry + C2 1y R3Ry = 0 (98b)
where the coefﬁcientﬂfjk, ijk andCf’jk are given by Eqg. (53). In case of low-order internal resoeanc
the dynamical monoms corresponding to resonant termsdinouamally be added into the normal form,
Eq. (52), which were derived for the case of no internal rasca. However, the case considered here
(a perfect shell) does not produce new terms because of theepsymmetry of the initial problem. For
example, one could have find a monom IiR%RQ in the first equation as it is a resonant term. However,
this dynamical term is not present in the original equatienauserl,, = 0, so it is not present in the
normal form.

For comparison, the ROM obtained with theonservative NNM”formulation is also computed.

It can be obtained from Eq. (98) by settidg;, = 0, and A7, B, to their values obtained for
& = 0, Vi. Frequency-response curves are numerically obtained AUfRO for the three following
models: reference solution with 16 degrees-of-freedord,the two ROMs corresponding to "damped”
and "conservative” NNMs. For these simulation, the origgimadal coordinates are simply recovered by
using Eq. (39).

Figure 30 shows the frequency-response curves for therdmadeA; ,, and its companion mode
By . The full system simulation with 16 dofs is presented withiak line. The dynamical response is
composed of two main branches of solution. The first brancfespond to single-mode motion where
only the driven moded, ,, is present in the respons&;(,,=0). This branch present a softening-type
nonlinearity. Due to the presence of the companion modeliinternal resonance with the driven mode,
the main branch loses stability at the Bifurcation point \B#here a secondary branch of coupled solu-
tions emerge. Along this secondary branch, the couplingdet the two resonant modes is strong and
energy is exchanged inbetwwen them, resulting in imporahtes forB, ,,. Moreover, this secondary
branch encounters an instability with the presence of twiondeck-Sacker bifurcation points, denoted
as TR (like "torus” bifurcation) on the figure. Inbetweengtbhawo Neimarck-Sacker bifurcations, the
harmonic solutions are not stable anymore, and a quasifieriesponse is observed.

Let us now observe how the ROMs build with NNMs are able tovecall the fine details of this
bifurcation diagram. Théconservative NNM”case is plotted with a dash-dotted line. One can see that
all the dynamical features of the original system are reamethe two branches are found as well as the
nature of the bifurcations and the stability. This resulswaavaited since it is a fundamental property of
the normal form to recover the essential dynamical progpgrthus the qualitative behaviour (humber and
nature of bifurcations) will always be predicted by the ROM.already mentioned in the 2-dof example,
a higher value of the maximum amplitude is found, showing the damping has been underestimated.
This is corrected with thédamped NNM” ROM, which gives a very good result, although one may
argue that the softening effect is a little bit overestirdate
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Figure 30: Maximum amplitude of transverse shell vibratiemsus excitation frequency. (a): driven
mode A, ,,. (b): companion modé3, ,,. Thick line: reference solution (unstable states (dashak t
line) and bifurcation points are indicated: BP : pitchfofiR: Neimarck-Sacker (torus) bifuration). Con-
servative and damped NNM ROM s are represented with thin line

Recovering the original modal coordinates with Eq. (39va&hthat, thanks to the curvature of the
invariant manifold in phase space, slight contributions present onto all others linear modal coordi-
nates. For comparison, the sixth most important modal dudgls are represented in Fig. 31, for the
full-order model, and thédamped NNM” ROM. This figure shows that the reduced model with two
equations allows to recover all the modal amplitudes witbdyaccuracy.

This example shows that the method can be easily used fociregdthe non-linear dynamics of ge-
ometrically non-linear structures. The main advantagegeh the quickness of the method: computing
all the coefficients appearing in Egs. (39, 53, 52) is imntedia a standard PC for this 16-dof full-order
system. As two approximations are used to produce the ROMdhaa time-invariant manifold is used,
and it is computed by a third-order asymptotic developmeétig awaited that the results can deteriorate
for very large amplitude motions. However, this exampleashthat up to two times the thickness of the

shell, the ROM is robust.

4.4 Comparison with the Proper Orthogonal Decomposition m#hod

This last section is devoted to a comparison between redoicknt modeling as proposed with NNM

via normal form theory, and the more popular Proper Orthag@ecomposition (POD) method. For

that purpose, the case of the circular cylindrical shelledilwith water and harmonically excited in

the vicinity of one of its fundamental frequency (as in thevimus subsection), is selected. A brief
presentation of the POD method is first carried out, then sesdts are presented in order to illustrate
the advantages and drawbacks of each method.

The POD method optimally extracts the spatial informati@cassary to characterize the spatio-
temporal complexity and inherent dimension of a systemmfeoset of temporal snapshots of the re-
sponse, gathered from either numerical simulations orraxeatal data. This point is important in the
comparison since one needs to have at hand a set of solufitims system, in order to build the POD
ROM from that set. This can be seen as an advantage in anmgueal context, where the POD method
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Figure 31: Maximum amplitude of transverse shell vibrati@nsus excitation frequency for six slave
modal coordinates: (a) and (b): driven and companion of asgtric (1,2n) mode; (c) and (d): driven
and companion of asymmetric (3,2n) mode; (e) and (f): axmgtnic (1,0) and (3,0) modes. Thick line:
reference solution. Thin line : ROM computed from the twd-amped NNM” master coordinates.

is routinely used to extraetg.coherent structures from measurements. However in a tiieadreontext,
this appears as a drawback, since one is obliged to run soméasion to have a set of results in order to
build the POD ROM. Moreover, the question of the choice ofdjieamical solutions to compute, from
which the ROM is built, is very important, and a great care nbastaken in this choice.

In the present context, the temporal responses are obtsiaedirect simulation with the conven-
tional Galerkin solution. The question of the selected dyical solutions for these direct solutions is
postponed to the results to better explain the differenoescan obtain in choosingg. either a regular
or a chaotic solution. The Proper Orthogonal Modes (POM®&iokd by the POD method are denoted
v, (r, 6). Once they are obtained, a Galerkin approach will be usettierdo derive oscillator equations
for the ROM, via:

Ppop
w(r,0,t) = > a;(t)¥;(r,0). (99)
=1
In this expressiong;(¢) are the proper orthogonal coordinates dh p is the number of POMs (dof)
used to build the POD model. It is awaited to obt&jpy p significantly smaller thaiz, x5/, the number
of linear modes necessary for the conventional Galerkirhoteto converge. The question is here to
comparePpop with Py yas.
Let us now explain briefly the method used to find out the PODewdd(r, §). The interested reader
is referred to general introduction on the POD method to tzagemplete description, seeg.[9, 17,
26, 27], here only the main steps are recalled. The displacefreldw(r,6,t) is first divided into its
time-mean valueo(r, ) and the zero-mean respongér, 6,t) = w(r,0,t) — w. In the POD method,
the POMs are obtained by minimizing the objective functiefirted by:

A=< (Ui(r,0) —(r,0,1))% >, Y(r,0) eQ (100)

a7



where() denotes the space domaia,> the time-averaging operation and (r,#) the generic POD
mode. For minimizing the objective function, a collectiohdynamical states are needed. They are
collected from a direct simulation. For example, havindized a temporal solution of the complete
problem for a given external force, resulting in a given dyiwal behaviour, one is led with a discrete
collection of eventso(r,6,t,), for n=0 to N;, the number of time steps of the dynamical simulation.
Let us denote byb,, the so-called temporal snapshots of the computed solutiend, t,,). Then, the
time-averaging operation of a series/éf snapshots writes:

N
1
<w(r,0,t) >= — W, 101
QUES D3 (101)

Minimizing of the objective function (100) is obtained,&fsome mathematics, by solving the following
eigenvalue problem:

/ <w(r,0,t)w(r, 0 t) > U ) r'dr'dd’ = \U(r,0), (102)
Q

where< w(r,0,t)w(r', 0, t) > is the time-averaged spatial autocorrelation function.

A Galerkin projection scheme for determining POMs semibgiwally, and in parallel to approxi-
mate the solution of the PDE, is now presented. This teclenigqis been developped initially in [40] for
beams conveying fluid and extended to circular cylindriballs in [6, 7, 8]. The main idea is to express
the POD modes as linear combination of the eigenmodes argdrtiures, hence allowing for:

e A physical interpretation of the POMs

e An analytical expression of the dynamical system govertirggdynamics of the problem in the
POD basis.

The generic POM is projected on the eigenmodigs;, §) of the shell as:

Prnm

U(r,0) = Z a;P;(r,0), (103)

i=1

whereq; are unknown coefficients. Then, the following eigenvaluabpem is finally obtained:

Aa=)\Ba, (104)
where
Aij = TZ‘TJ‘ < ('jl(t)ijj(t) >, Bij = Ti6ij7 T; — / q)?(’l“, 9)rdrd9, (105)
Q

d;; is the Kronecker symbo#j; (t) = ¢;(t)—g; is the zero-mean response of the ith generalized coordinate
with g; being its mean. The norm of the basis functienm the present case isR L /2 for asymmetric
modes andrRL for axisymmetric modes. In Eq. (104}, and B are symmetric and positive definite
matrices of dimensio®;, x s X Pryvas, anda is a vectorfontaﬁng th€r, v 57 unknown coefficients of
the POMs. The eigenvectotscorresponding to the largest eigenvalues (known as domiP@ivs) in
Eg. (104) can now be inserted in Eg. (103) that gives a basithéoapproximate solution of the PDE
using the Galerkin approach; this will be referred to as tB®FGalerkin scheme hereafter.
Recombination of modal expressions given in Eqgs (103), §9@) (97) allows deriving the accurate
expansion of the POD mode onto the basis of the linear eigdamof the shell as:

Ppop Prnm Ppop M N

w(r,0,t) = Z a;i(t) Z a;i®;i(r,0) = Z Z Z [ n.i c0S(NB) + B ni sin(nd)] sin(Ay,r),
j=1

=1 i=1 m=1n=0
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(106)

where on the right-hand side two different symbals, ,, ; and 3, i, have been introduced to differ-
entiate the coefficients of the POMs for cosine and sine témmisand are given by the corresponding
aj;. EQ. (106) is used to solve the equations of motion of thel,spigen in the beginning of the pre-
vious subsection, Egs. (94) and (96), with the Galerkin wetto find the equations of motion of the
ROM. Moreover, Eq. (106) has still the same shape over thit slndace as Eq. (97); therefore, the
fluid-structure interaction can be treated with the sameagmh used for the Galerkin method. This is

not surprising, because the POD modes have been projectbé eigenmodes.

The coefficientsy,, ,; and 3, ,; are also meaningful in order to get a physical interprefatd
the POMs in phase space. Indeed, the POD method can be sege@setrical method that span the
phase space with orthogonal modes, as enforced by the éigemvalue problem that defines the POMs,
Eq. (104). These orthogonal modes are defined by the direofithe phase space where most of the
information is present, which also explains why the choitthe data used for computing the POMs is
crucial. In the POD-Galerkin scheme developed here, the Paxl expressed in the basis of the linear
eigenmodes of the selected structure, so that the coetBeigp,, ; andf,, »; can be directly read as the
deviation between the POMs and the linear eigenspaces.
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Figure 32: Maximum amplitude of transverse shell vibrati@nsus excitation frequency. (a): driven
mode A, ,,. (b): companion modés; ,,. Thick line: reference solution (unstable states (dashauk t
line) and bifurcation points are indicated: BP : pitchfofIR: Neimarck-Sacker (torus) bifuration). Blue
thin line: ROM obtained by considering two NNMs. Green thiitie: ROM obtained by considering
three POMs. Points b and ¢ denotes the dynamical resporsggarduilding the POD ROM.

The comparison between the ROMs either based on NNMs, or @ BMow addressed. For that
purpose, the case of the circular cylindrical shell filledhawater, excited harmonically in the vicinity

of its fundamental mode, is considered. The performancdheoROMs are assessed by comparing
their ability to recover the full bifurcation diagram foui the previous subsection, Fig. 30. Fig. 32
shows the comparison between the reference model with gérlimodes, as already shown, together
with the ROM composed of two NNMs (also shown in the previceisn), and finally the result given

by considering three POD modes.
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i pom a1si  Pisi | 01104 B1,10,i ‘ 1,0, a3,0,i
1 1 0 0.000213 0 0.000043| 8.8e-6
2 0 1 0 -0.00029 0 0
3 0.000123 0 -0.1847 0 -0.9641 | 0.1855

Table 1: Coefficientsy,, ,, ; andf,, »; defined in Eq. (106), for the first three POD modes obtaineld wit
point c.

The selection of the temporal response used for buildinggB-based ROM is fully documented in
[6], illustrating the difficulties encountered for choogia proper case allowing to recover the response
shown in Fig. 32. In particular, Fig. 32 shows two poirit&ndc, that have been used in the process.
For pointb, the frequency isv = 0.995w1, the response is on the second branch, which means that
the coupling between the two configurations is activatedwéi@r, the poinb is selected just before
the Neimarck-Sacker bifurcation, so that the response rimdw@ic. On the other hand, poiat for
w = 0.991wq, is also on the coupled solutions branch, but in the qudsigierregime. If one uses
point b for building the POD model, results are not satisfactoryllatthe solution branches moves off
the reference solution [6]. Secondly, it has then been foomubssible to recover the Neimarck-Sacker
bifurcation point in that case, so that the quasiperiodifnne is not predicted by the POD based ROM.

For the POD ROM, the best result has been obtained by usimg gan the quasiperiodic regime.
The reason is that the quasiperiodic orbits shows largeati@ns in phase space. Hence the available
information for building the ROM is more important. For reducing the complete bifurcation diagram,
the best solution has been obtained by retaining three P@Mshown as a green line in Fig. 32. One
can observe that the complete bifurcation diagram has tzey fecovered, with all bifurcation points
and special regimes found.

Comparing now the NNM and the POD-based ROMS, one can ob#&atboth are able to recover
the bifurcation diagram. However, three POMs are necessargus only two NNMs. Retaining only
the first two POMs gives incorrect results: in that case, tiséifurcation point allowing to go from the
uncoupled, first branch of solution; to the coupled, secondeanch, is not detected, so that 1:1 resonant
motions are not predicted ! On the other hand, the NNM-bagel Rjives very satisfactorily results
with only two modes, and with direct application from the PBfEnotions, without having to work out
with a difficult selection of a correct database to consttnetROM.

A geometrical interpretation, in the phase space, allowmtterstand why three POMs are necessary
to reconstruct the correct solution, whereas only two NNMsenough. The coefficients,, ,, ; and
Bm.n,i for the first three POMs, obtained by using patrftjuasiperiodic state) for creating the snapshots
database, are given in Table 1. One can seedthat =1, which means that the first POD mode is very
near the first linear eigenspace, with a very slight dewiativen by the small, but non-zero, values
of a1 10,1 anday 1. The second line shows that the second POD mode is very reaetiond linear
eigenspace, with a very slight correction alaig;. Finally the third line shows that the third POM is
essentially colinear to the first axisymmetric mode (1,hwome slight corrections.

Figure 33 shows a cut-off (Poincaré section) in the phaseespf the complete problem, which is
of dimension 33 (16 linear modes with displacement and vtgloplus the forcing term). The plane
selected for the section i, 5, A1) driven mode and first axisymmetric mode. The clouds of jgoint
are obtained from the direct simulation obtained with tHerfwdel, at pointsh (harmonic coupled so-
lution) andc¢ (coupled quasiperiodic motion). As awaited, the quasguiéci motion occupies a larger
volume in phase space. The most important appears in theegligible motions along the axisym-
metric mode. The fundamental importance of retaining awiggtric modes for analyzing nonlinear
vibrations of asymmetric modes of shells has already bederlined in many studies [4, 5, 3]. Itis the
result of a non-resonant, invariant-breaking term betvthese two modes. Consequently, the response
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Figure 33: Poincaré section inl(; 5, A(;,)). Cloud of points: section of the orbits with the Poincaré
plane, caseg andc. POD differs very little from the original axis, whereas thé of the 4-dimensional
invariant manifold (curved hyperbolic line) goes rightdetween the points (NNMs).

of A1), though non-resonant, is not negligible, as ascertainefligy. 31(e) and 33. The generating
axis of the POD and NNM-based ROMS are also shown in Fig. 33alfeady underlined, the POMs
differ very slightly from the linear modes. On the other hathd NNM method allows, thanks to normal
form theory, to include the non-resonant coupling teims the change of coordinates. The cut of the
NNM is shown in Fig. 33, one can see that it takes naturallg axtcount this non-resonant coupling
term into the geometry of the manifold, so that the subspaoesery near the points of the reference
simulation. This explains why the POD method need to take a&ucount the third POM: otherwise
the axisymmetric coupling would have been missed, henadtirgg in an incorrect ROM. On the other
hand, The NNM-based ROM is accurate with two NNMs only, admeding of the phase space is taken
into account in the nonlinear change of coordinates.

As a conclusion on this section, the examples with shell nsduve shown the ability of the NNM-
based ROMs to produce accurate models for predicting tlumaes forced response of thin structures
with moderately large vibration amplitudes. The last sabiee where comparison with the POD method
has been drawn out, underlined two important features diitki&l method:

¢ the method is directly applicable on the resulting dynairdgatem, as a supplementary (nonlinear)
change of coordinates. There is no need to compute, as inQBenfethod, a reference solution,
in order to be able to build the ROM. This is a great advantag®we especially as the choice of
correct solutions is a tricky problem that need experiemzkaannot be realized blindly, sea.

[6].

¢ thanks to the invariant (curved) based span of the phase sfaeresults obtained are of better
agreement, with less NNMs than POMs. This is the advantagesiafy a representation basis
that have a physical meaning, and is able to properly caemdm-resonant couplings, that are
important for the geometry, but not for the dynamics. Thidariines again a key idea claiming
for using NNMS for reduced-order modeling. There is an "app# complexity of the dynamics
which is only due to the non-resonant coupling terms, whielates the curvature of the invariant
manifolds. This complexity is said to be "apparent” sinceah be cancelled through a nonlinear
change of coordinates. Once this complexity embedded igdloenetry, a better reduction is
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obtained, and the complexity due to the resonant terms -atteateally key for the dynamical
properties of the solutions— can be more easily studied.

These conclusions need however to be moderated by the tlsaviiog points:

e As proposed, the NNM-based ROM relies on two important agsioms: a third-order asymp-

totic method is used, and a time-invariant manifold is addpfThese assumptions have the great
advantage to produce simple ROMS that are derived quicklyout complicated numerical com-
putations. However, increasing the amplitudes of vibrgtilhe NNM-based ROM can lose its
accuracy due to these two assumptions.

e The NNM method relies on a local theory, whereas the POD ndathglobal (in the sense of the

phase space). Hence the POD method can be more robust tovéaigtions of the parameters.
This is for example illustrated in [8].
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A Expressions of the coefficients for the normal transform inthe conser-
vative case
Expressions of the coefficienta};, b7, rfjk, ufjk, Vijs ijk, yfjk) used in Egs. (39), which allows

one to go from the modal variables (associated with the gahal linear grid) to the normal coordinates
(associated to the invariant manifold and the curved griel)gaven here.

A.1 Quadratic coefficients

e The following expressions are obtain&th = 1, ..., V:

Vi=1,.,N,Vj>i .. N:

w2 + w? — w?
@ = = (1072)
ijp
2
p
i =0 (107¢)
Oéfj =0 (207d)
ij =0 (107¢€)
2
A — 107
Vi 4(,012 _ w]% Jii ( f)
Vi=1,..,N,Vj>i, .., N:
w? —w? — w?
p_ X i P
Yij = Dijp gfj (1079)
w? —w? — w?
V= (107h)

whereD;;, = (wi + wj — wp)(wi + wj + wp)(—wj + wi + wp) (wi — wj — wp).

A.2 Cubic coefficients

e The following coefficients, which correspond to the triljalesonant terms, are equal to zero:

Vp=1,.,N: ugpp = rgpp = Mgpp = Vgpp =0
Vi > peN g =y = g, =
Fij = Vois = Vipi = (1083)
Vi<p:ori, =g, =ty =0

p _.p _ . P __
Piip = Viip = Vpii = 0
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e The non-zero coefficients are now givety, = 1, ..., N:
Vi=1,.., N, i1#p:

i = Dl(l) [(7%‘2 - W;%)(hzz‘ + A% + 2“?35‘@‘]
ip
Ugg = Dlgl) [6hy; + 6A%; + (3wf — wp)Bi]
ip
M%i _ UZ” 2 2 (1P 2, 2P
v = oo (0w = 3wp) (ki + A7) + 2wjw? B
ip

whereDg) = (w]% - w?)(w]% — 9w?).
Vi=1,., N1, i%p ¥j>i, .. N:
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Whel’eDSI)) = (wp + wi — 2wj)(wp + wi + 2w;) (—wp + w; + 2w;) (—wp + w; — 2w;).
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Vi=1,.,N—=1,%>i ..,N, j#p :

p _2wi2(4%2_3("’122_W?)+(Wp_wj)2(wp+wj)2 P AP _pP
P = —AP - — AL ht.
iij 2 2yp®@ ij gt g
(wp = wi)Dijp
2w HAw? — Wk - 3w?) b _ 2wiw? =3
> o p@ T @ D
(Wp Wj)Dijp pr
2R =B o+ y— )y ),
jii 2 jii
(w3 —w?)Df)
2 2 2 2
8wy — 2wy — 6wy [ AP AP _ P ] _2LBP
D@ L A R = e B
Wp = W) Pijp up
1 2 2
ufz] ENG)) (2) (Afzz + Afz] + hfl]) 4w Bf” (wp o wj N 4w )BZ]]
©jp
4 4 4 2 2 w2
Vp“:8wi+wj+wp—2ww—6wi ]—Qw] P IAP AP 4P
Ji 2 _ ,2p? gut T g T
(w] w ) 9Jp
8w§—2w2- . —6w w} p“+wi2(w]2»—4w2+w§) b
@) i ) w
(wj w2)D ijp Dijp
8w? — 2w — 2uw?
oty = e
DZJP
Qwi — 8wl + 2wiw po —w;»l + 4w2w + sz ;2) p
(2) Jti (2) "
Dijp Dij
2 2 2
sz 8w —2w —6w [Ap AP ] 4wi—wj—wap”
2 _ 2yp@ LT T DZ) "
(wj w ) P ijp
_Gwi j+2wj 2+2w< —8w —wf,—w;pr
2 jii
(w] w2)DZ(ﬂ))
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Vi=1,..,. N=2,Vj>14, ... N—1,Vk>j ... N:
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p 1 90120922 4.2, 6 2, ,4 6 _ = 4.2 4,2 2,2, 2
Viij = [ ( 2wiwiwy, + wiwy — w; + 3wiw; + wp — Twiw, — Hwjw? + 2wiwsiw,
2,4 6 2, 4 2,4 4,2 2,2, 2 2,2, 2 2 4
+9wiwi2 + 3cgi + E;wawp + (,Zjo;p — dw;wy + 10w wiws — bw;wiwy + 3wiw,
P P P P
i n s S Sk e A S )
+( 3w; wp4—{—2wl-2 - 6wl-2w%wp - ’gwgwi + Gwalzwgwp + iwgwéwp —67c;i ijp2 Y
+18w; wiw; + 3w;wy — 3w;wiw; — Twiwiw, — 6w;wiwy + w;wj — 3w; wpw;
+5w; wpwy, + wiws — 5wl4w;~1 — 3wlw? — wiwd 4 3wiw?) B
+( 3w,%w]6 + Gw?w}lwg + 5w§1w;-1 + 7w24w]2-w§ - 9wf‘wz,w2» — w?wb + wbw? — w?win
i 4 6, ,2 2,4, 2 6, ,2 2,2, 74 2, 2" 4
—3w12,w]2~ —|—23(§;jwp 2—{— élwi wlflezi — 3w; (;Jj 2— i)wwéw — 2Wiwiwy — Wipwsw
P
+2wiwiwiwy, + wiwy — 3wjiwy — 10w;wjw; — w?) B
+( —4w§1w£w]2 — bwwiw? — 4w§1w;-1 — 12w?w2w12, + 2wi2w]2»w§ + 4wi2w?w§
2,,2° 4 6 2, ,6 2,272 2\ P
+12w; wiw; + 10w;ws — bwiw; + dw;wiwswy) By, ]

P 1 2, 4 4,2 2, ,4 4.2 6 o 4 2 2, 4 2,2, 2 6
Vig = [ wjw +wjwy + 3wiw; + wiw, — wy, — 3wjwy + 3wiw, + 2wiwiw, + W)
+3w;§wj2- + w?wf; + 2wiwj2-w12) - wg + 2wl-2w,%wj2- - 10wl-2w,%w12) - 3w;-lwl-2
4,2 2 4 6 2, 4\ (P P p P
Fwjwj; — Bwiw; — wp + wiwp) (e, + Ay + A + Ajig)
+( —3w4w,‘§ - w?wiwﬁ — 2wi2w,§w]2» — 2wi2w,§w§ - w?wiwﬁ + wiw?
2, 6 2,4, 2 4,2, 2 2,6 2,,2, 4 4.4 6, ,2 2,4, 2
+w,§wj - Q;Uj;uka;p; w; wé,wg + 3wiw!f — wgw-wg — 3(’2"12%% 4;300;&01, — Wjw;w,
—wy, + 10wjwiwiw, + 3wiwy — 3wjw, — wiwiw; + (.uk(,up)Bij/,C
+( —4wi2w,3wj2»w12, + 4wi2w§w32» + 4wl4w,zw32» — 2wi2w2 + 6wz~2w,%w§ — 4w§wﬁw§
—2ww + dwiwy — 2wiwiw] — dwwiw?)BY,
+( —wa‘w?wg + 3w?w£ - 3w§1wé + 3w?w12, - 3wf‘w§‘ - w-2wj2» f; - wa‘w,%w;
8 2,4, 2 2, 6 4,2, 2 2,2, 4 6, ,2 2,,2,,2 2
—W; — W Wy, + wiw) — 2wiwpw; — wiwpw, + 3ww; + 10w; wiwiw

) 7P
2,2, .4 2, 4,2 242)Bp]

2,,6 2,,6 4, .4

p_ 1 11204 24,2 4,2 6 A 2 5 o4 2 6 4 2
) [ ( Nwjw; — 3wjwy, + ww; — wy + wjw, — Twpw, — w; + w;wy
1JRp
20,22 2,4 6 2,2, 2 2, 4 2, 4 2, 4 2,4
+2u6)jwi wzf; _23%‘%2 +23c;k - 6wi2w,§w12, + (;Jjwp +p3wi wp;— 5wku;p — Swjwy
Fwp + 3wjw; — 2wiwiwy, + 10wiwiws) (R + Ay + Ay + ALy )
+( 12wi2§u,%§u;~14— 6w,%:uj64— 4%2(“;%0?2 —2|— 4w§oi,%w2j u;; + 4w,%2w;2w§
— _ _ P
+H2wiwiw, — dwjw, — 12wiwiwy, — 6w;wiwy + 10ij,Z)Bijk
+( 3w,%w§3 + 6wi2wzw]2w§ + wiwf — 3wi2w,%w? - w,%wg — 3w; w,%w]z
2, 4, 2 2,4, ,2 4,4 6,,2 2,,6 2,2, 4 2,4, ,2
PSRl Gutoid bl - safef sl + st - 6ol
P
Fwy, + dwiwiw, — 3wpwy + 3w,wy — Tw;wiw, — dSw;wy — 7wkijp)sz‘k
+( —wiwiwp — W — Bwiwiwg + Twiwiws + Swiwy + 3wiw? — wiw?

15D J
—3w§w;-1 + w?w]z + 2wl-2wl%wj2-w§ + 11w?w£w]2» + wgw? - 10wl-2w,%wj - 3wj2-w2
o 4,1 g, 274 2 2°6 24,2 7 2.9 4 o 2 4 9\pp
Bwjw; — Yw; wpws + 3w;w; + bwiwiwy — wiwiw, — 2w; ijp)Bkij]

whereD() ) = (w +w; — wp — w;) (Wi + wi — Wy + wj) (—wh + w; + wp + w;) (—wh + w; + wp —

wj) (Wi + wi + wp — wj) (Wi + wi + wp + wj) (—wi + wi — wp + wj)(—wi + wi — wp — wj).
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