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Lyapunov Exponents from Experimental Time Series: Application to 
Cymbal Vibrations 

Cyril Touze, Antoine Chaigne 
Ecole Nationale Superieure des Telecommunications, Departement TSI, CNRS URA 820,46 Rue Barrault, 75634 Paris Cedex 13, France 

Summary 
Lyapunov exponents are among the most relevant and most informative invariants for detecting and quantifying chaos 
in a dynamical system. This method is applied here to the analysis of cymbal vibrations. The advantage of using a 
quadratic fit for determining the Jacobian of the dynamics is presented. In addition, the interest of using a time step for 
the evolution of the neighbourhood not equal to the timelag used for the reconstruction of the phase space is underlined. 
The robustness of the algorithm used yields a high degree of confidence in the characterization and in the quantification 
of the chaotic state. 
To illustrate these features in the case of cymbal vibrations, transitions from quasiperiodicity to chaos are exhibited. 
The quasiperiodic state of the system is characterized together by the power spectrum of the experimental signal and 
by calculation of the Lyapunov spectrum. 

1. Introduction 

Cymbals belong to the category of non linear percussion in­
struments. In their normal use, these instruments are struck 
by a mallet. Pairs of cymbals can also be struck against 
each other, especially in bands or in orchestral use. Due to 
the rather heavy strokes, the vibrations of cymbals generally 
exhibit large amplitude, compared to their thickness, which 
leads to nonlinear effects. As a consequence, the pitch of such 
instruments is not clearly defined. Only at the end of the de­
cay, as the magnitude of the motion becomes sufficiently 
small, one can clearly hear the most salient eigenfrequencies 
of the normal modes predicted by the linear theory. Previ­
ous investigations on cymbals are mostly concerned with the 
linear regime [ 1], and only a few references address the ques­
tion of nonlinearity which is of prime importance for these 
instruments [2, 3]. In order to tackle this problem, one strat­
egy consists in investigating the underlying physics of the 
vibrating structure. This method has been applied to gongs 
in the past [4, 5]. One complementary approach is to inves­
tigate the dynamical behaviour of these instruments with the 
help of nonlinear signal processing tools. This is the purpose 
of the present paper. 

The main difficulty for the analysis of struck cymbals fol­
lows from the broadband excitation of the initial pulse. This 
pulse excites simultaneously a very large number of frequen­
cies, in a very short amount of time, which makes it almost 
impossible to analyse the successive bifurcation mechanisms 
and the routes to chaos. In addition, the magnitude and loca­
tion of the pulse is generally hard to reproduce. Therefore, 
it seems more appealing to drive the cymbal with slowly 
and continuously increasing magnitude, so that transitions 
from the linear to the chaotic state can be observed, and to 
limit the spectrum of the excitation. In practice, the cymbal 
is driven here sinusoidally at frequencies close to the most 

salient linear eigenfrequencies of the instrument, or inten­
tionally apart from these eigenfrequencies [6]. The velocity 
of one selected point of the instrument is recorded during 
about three minutes (see Figure 5). At large amplitude, it is 
interesting to notice that the sound obtained by driving the 
cymbal with a sinusoid instead of a pulse is clearly com­
parable to characteristic cymbal sounds, although the tone 
quality may be somewhat poorer. This is a strong argument 
in favor of considering the typical sounds of the instrument 
in ordinary performances as a combination of the nonlinear 
effects due to a limited number of active modes. 

In this paper, particular attention is paid to the calculation 
of the Lyapunov exponents from experimental time series. 
The method used here for computing the Lyapunov spec­
trum relies on an idea conjointly developped by Eckmann 
and Ruelle [7, 8] and Sano and Sawada [9]. This method 
consists of approximating the matrix of the linearized flow 
in the reconstructed tangent space. One major advantage of 
this method is that, in theory, the complete spectrum of the 
exponents can be obtained. Other methods, in which the di­
vergence of nearby trajectories is used, are also possible can­
didates, but their principal.limitation follows from the fact 
that, in practice, only the maximal exponent can be obtained 
[ 10, 11]. Other methods, based on a global reconstruction 
of the vector field and especially designed for short or noisy 
data sets, are also available [12, 13]. These methods will not 
be considered here. 

The main features of the algorithm presented in this paper 
are the following: first, the local Jacobian of the evolution 
function in the reconstructed tangent space is approximated 
by a higher-order local polynomial [14, 15, 16]. As a conse­
quence, it is expected that the accuracy in the determination 
of the negative exponents will be improved, and that the 
presence of spurious exponents, multiples of the true expo­
nents, will be avoided. One example of the existence of such 
spurious exponents was first noted in [8]. More recently, an 
analytic proof has been given by Sauer et al. [ 17]. Second, a 
time step for the evolution of the neighbourhood is selected, 
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which is different from the timelag used for the reconstruction 
of the attractor. This improves significantly the detennina­
tion of the exponents. These properties of the algorithm will 
be illustrated numerically on standard computer-generated 
time series originated from chaotic discrete and continuous 
dynamical systems. 

Interpretation of the Lyapunov exponents related to real 
world data is a rather difficult task which should be done with 
great care. However, a number of successful applications 
can be mentioned, which cover various fields of physical 
systems: hydrodynamics [8], chemistry [10], fundamental 
physics [ 18, 19] and acoustics [20, 21 ]. including musical 
acoustics [22, 23], and speech [24]. In section 3 of the pa­
per, the computation of the Lyapunov exponents is appbed t.o 
experimental time series obtained from measurements per­
formed on a thin crash cymbal, which is driven sinusoidally 
at its center by means of a shaker. Similar experiments were 
conducted in the past by Fletcher. Rossing et al. [3, 5, 2]. By 
increasing slowly the amplitude of the shaker motion, transi­
tions from linear to chaotic motion are observed. A complete 
description of the experimental setup can be found in [6}, 
together with the results of the algorithms used for estimat­
ing the dimensions of the system (correlation dimension, and 
false nearest neighbours). The calculation of the Lyapunov 
exponents makes it possible to detect the presence of chaos, 
and to quantify the "degree of disorder" in the chaotic regime. 
In addition. this analysis gives us a better understanding on 
the route to chaos observed in the system, through testing of 
the quasi periodicity of the measured signal. This point will 
be developed in section 4. 

2. Calculation of the Lyapunov spectrum 

2.1. Algorithm 

The methods of current use in nonlinear signal processing 
are based on the Takens reconstruction theorem [25]. Recent 
surveys present both the theoretical background and appli­
cations of these techniques for chaotic signals [18, 19, 26]. 
Therefore, the fundations of this theory will not be developed 
further in this paper. 

In order to compute the Lyapunov spectrum of a given 
time series, it is necessary to obtain the local Jacobian of the 
underlying now from the trajectory in the reconstructed phase 
space. The principle is the following: Given a time series 
{s(n)}n=l. .. N. a multivariate trajectory is formed with a 
timelag T and a so-called embedding dimension d5. The 
value of the timelag is usually taken as the first minimum 
of the Average Mutual Information function [27]. A lower 
bound for the embedding dimension can be given by using 
the test of the false nearest neighbours [28]. This yields the 
vector: 

y(k) = [s(k), s(k + T), ... , s (k +(dE - l)T)] . 

Denoting F the evolution function which maps the vector 
y(k) onto the vector y(k + Tp), one can write: 

y(k + TF) = F(y(k)), {1) 

where TF is the time step for this local neighbourhood-to­
neighbourhood mapping. The main task of the algorithm is 
to compute the local Jacobian matrix DF(k) in the tangent 
space, since the Lyapunov exponents are computed from the 
eigenvalues of the Jacobian. 
Defining further: 

• {y{k;) } i=I. .. Nv : the Nv nearest neighbours ofy(k), 
• TJ(k, i) = y (k;) - y (k), i ;:; 1 .. . N u: the small dis­

placements in the neighbourhood ofy(k), 
• TJ(k+Tp,i) = y(k; +Te) - y (k +Tp),i = 1 ... N11 : 

the small displacements in the evolved neighbourhood, 
after T F time steps, 

the local Jacobian is then calculated via a Taylor expansion 
in equation (1). The standard method consists in Iinearizing 
F, but it has been found that higher-order Taylor expansion 
give better results [16]. 

A second-order expansion, for example, with i = 
1 ... N11 , yields: 

TJ(k + Tp , i) = (2) 

DF(k)ry(k, i) + ~ry(k, i)tH(k)ry(k, i) 

where 

(8F·) DF(k);,; = By; (y(k)) 

is the Jacobian of the evolution function F, and 

( 
82F; ) 

H (k);,;,t = fJyjl)y, (y(k)) 

is the Hessian of F . 
Equation (2) is then projected onto a subspace of dimen­

sion dL 5: de. de- is the local dimension corresponding to 
the dimension of the manifold on which the dynamics takes 
place, which should not be mistaken for the embedding di­
mension dE . The dimension dE should be large enough so 
as to avoid the presence of false neighbours [ 18, 19]. All sub­
sequent calculations are made in a dL-dimension subspace, 
which provides us with d1, Lyapunov exponents. 

The next step of the algorithm consists in calculating 
DF and H through matrix inversion corresponding to equa­
tion (2) (the Hessian part can be written in a matrix form. 
See, for example. [ 16) for more details). The coefficients of 
H are useful only for assessing the trajectory, since the Lya­
punov spectrum is computed from the eigenvalues of DF. 
Thus, only the Jacobian part is finally retained. 

The last step of the algorithm is the classical QR decom­
position of the Jacobian, which is evaluated along the phase 
space trajectory, in order to calculate the dL Lyapunov ex­
ponents [7]. With K the number of points on the attractor for 
which the Jacobian has been estimated, R(k) the R matrix 
from the QR decomposition at y(k ), and T the sampling time 
step, the itlt Lyapunov exponent is given" by: 
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This summary of the main steps of the algorithm shows that 
many parameters are involved: T and dE for the reconstruc­
tion, Tp, dr" K and Nv for the fit. For most of them, simple 
rules are clearly established to avoid pitfalls. A large number 
of references exist in the literature devoted to non linear signal 
processing where the rules for selecting appropriately these 
parameters are specified (see, for example, [18, 19, 29]). 

2.2. Higher-order Taylor expansion 

Most of the algorithms used for estimating the local Jaco­
bian matrix restrict the Taylor expansion of equation (l) to 
the fi rst-order (linear) term. In the present study, the use of 
higher-order expansions has been investigated. The major 
expected improvement is to increase significanrly the accu­
racy of the result~, especially for the negative exponents for 
which the linear algorithms present a number of difficulties 
[15, 16]. Two simultaneous burdens result from a linear fit on 
the Jacobian since, first, the trajectory must be approximated 
and, second, the Lyapunov exponents must be given. Using a 
higher-order expansion implies that all terms in the matrices 
of equation (2) are involved in the approximation of the local 
neighbourhood-to-neighbourhood mapping. 

The accuracy of the results does not increase monotoni­
cally with the degree dp of the expansion. This feature can 
be explained as follows: with increasing dp. it is necessary 
to take a larger number of neighbours into account in or­
der to perform the matrix inversion in good conditions. As a 
consequence, the assumption of small neighbourhood for the 
Taylor expansion is not verified any more. In other words, 
the number of selected neighbours Nv for computing the ma­
trix must be large enough to overcome numerical instability, 
but, at the same time, this number is limited in order to keep 
the neighbourhood as small as possible. A good compromise 
consists in selecting N v is given by [16]: 

Observations made by computing a third-order expansion 
of equation (1) show that the accuracy of the results is not 
significantly improved, compared to the second-order one. 
Therefore, it has been decided to select a second-order ex­

pansion. 
Another important fact that j ustifies the use of a second­

order expansion is linked to the problem of spurious expo­
nents. One major problem, when dealing with experimental 
time series, is that the local dimension of the attractor, and 
thus the number of Lyapunov exponents, is not known. As a 
consequence, if the dimension is too large, then the algorithm 
presented in section 2.1 generates spurious exponents. With 
a first-order expansion, for a noise-free case, it is found that 
some of the spurious exponents arc integer multiples of the 
true ones, as noted in [8] and demonstrated in [17). 

With a second-order expansion, still for a noise-free case, 
the presence of tJ1ose spurious exponents which are multi­
ples of the true ones, is avoided. With a linear fi t, a spurious 
exponent equal to twice the positive one appears as the local 

Table I. Calculated Lyapunov exponents for the Henon map, with 
linear and quadratic fits. The length of the sequence is equal to 
40000 points, with T = TFTT = 1 for a discrete map, dE = 8 
and K=l200. The apparition of a spurious exponent at twice the true 
positive one >.1 = 0.418, with the linear fit, is clear. The second 
theoretical exponent is >.2 = - 1.621. With the quadratic fit, the 
spurious exponents are all negatives. 

dL Lyapunov exponents, linear fit 

2 0.41468 -1.62298 

3 0.4 1585 -0.59021 -1.63580 

4 0.74228 0.40747 -1.58824 -1.86754 

5 082522 0.41393 -0.87694 -1.57883 -1.97449 

dL Lyapunov exponents, quadratic fit 

2 0.41951 -1.62404 

3 0.42024 -0.87376 -1.62046 

4 0.41806 -0.48700 -0.87292 -1.62386 

5 0.41866 -0.3 1485 -0.44684 -0.8641 1 - 1.61900 

dimension dL increases. This phenomenon may lead to the 

incorrect conclusion that two positive exponents exist in the 
system. By using a quadratic fit, those false multiple posi­
tive exponents are avoided. Despite our efforts, no analytical 
proof of this property could be given. Indeed, the mathe­
matical derivations leading to the analytic result of [17], 
when extended to the quadratic case, give a system which 
bears an implicit solution [30). However, a number of nu­
merical calculations performed on different systems (Henon 
map, logistic map, Lorenz system) show that the quadratic 
fit eliminates the multiple spurious exponents. This feature 
is illustrated for the Henon map in Table I. 

2.3 . Selection of the evolution time Tp 

Selecting an appropriate value for Tp is a particularly hard 

task in the case of continuous-time dynamical systems. Previ­
ous algorithms use Tp = T as a general feature (8], because 
it substantially simplifies the implementation. However, there 
are no other justifications for this choice, and thus it is not 
recommended to select Tp = T, since there are no relations 
between these two q uanti ties, as mcntionned in [16]. The 
choice of Tp is directly connected to the choice of the dis­
crete map which best fits the continuous How, and no general 
rules are available for this problem. 

However, for too small evolution time Tp, the local con­
traction or expansion properties of the How arc not well taken 
into account, thus leading to a bad estimate of the whole 
spectrum. On the contrary, when Tp approaches T, there is 
some probability for the trajectory to be too smoothed, hence 
leading to underestimate the negative exponents. 

By studying the effect of Tp on a number of continuous 
maps, it has been observed that using a too small Tp leads to 
poor results, and that the precision of the estimated Lyapunov 

spectrum becomes acceptable as TF 2: T / 2 . This feature is 
illustrated on a time series generated from the forced Duffing 
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Figure 1. Lyapunov equation for the Duffing equation, as a function 
of the evolution time TF. The parameters are K = 2000, T = 10, 
dE= 6, and dL = 3. 40000 points have been used for the calculation, 
with a quadratic fit. It can be seen that the acceptable values for the 
evolution time are obtained for TF :::: T /2. The true exponent are 
marked by dotted lines. 

equation: 

x + 8x + x + x 3 = a cos(wt) 

with 8 = 0.2, a = 40, w = 1. For this choice of parameters, 
the Lyapunov exponents are .A1 = 0.11, .A2 = 0, A3 = 
-0.31 (in s- 1 ) [31]. The time series was calculated with 
initial conditions: x = 1 and ;i; = 0.7. The length of the 
series is equal to 40000 samples. The first 5000 samples were 
cut in order to avoid the influence of transients. A fourth­
order Runge-Kutta method is applied to the system, with a 
sampling time step of 0.04 s. For this value, the first minimum 
of the Average Mutual Information function is obtained for 
T = 10 samples. In this example, Figure I shows that the 
best spectra are obtained for Tp 2: T /2. It has been found 
that this empirical rule remains valid for higher embedding 
dimensions. 

In a second set of experiments, a time series obtained 
from the first coordinate of the Lorenz system, sampled by a 
fourth-order Runge-Kutta scheme, has been used. The sam­
pling time step is equal to T = 0.01 s. In this case, the first 
minimum of the Averaged Mutual Information function is 
equal to 0.1 s, which corresponds to T = 10 samples. Fig­
ure 2 shows that in this case, the best spectrum is obtained 
forTp = T/2. 

In conclusion, it turns out that even if no general rule 
can be asserted, all particular cases investigated show that 
selecting Tp :::; T /2 leads to bad results. 

2.4. Results on computer-generated time series 

In order to check its validity and limits, the algorithm has 
been tested on computer-generated time series derived from 
well-known dynamical systems (logistic, Henon and Ikeda 
maps, Lorenz and Rossler systems, Duffing equation, super­
position oftwo incommensurate sinusoids). In each situation, 
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Figure 2. Lyapunov exponents for the Lorenz system, as a function 
of the evolution time TF. The optimal value for TF is T /2. The 
calculation has been made with 40000 points from the first coordinate 
of the Lorenz system, with K = 1500, dE = 4, dL = 3, and T 
=10. The true exponents are marked by dotted lines. A quadratic 
fit has been used. The influence of TF is particularly visible on the 
negative exponent (marked by a(+)), whereas the positive one and 
the vanishing one((*) and (o)) do not vary significantly with TF. 
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Figure 3. Lyapunov exponents for the Duffing equation as a function 
of the local dimension dL, with K = 1400, T =10, TF =6, dE =8. 
The true exponents are marked with dotted lines. 

a quadratic fit has been used. It is found that the true Lya­
punov exponents are estimated within I%. Only the two last 
examples (Duffing equations and incommensurate sinusoids) 
will be presented below. The first example is aimed at illus­
trating the performance of the method on a chaotic system, 
and the second example shows that the method used also 
yields excellent results with a non-chaotic signal. 

Figure 3 shows the computed Lyapunov exponents for 
increasing values of dL, with the time series used in the pre­
vious section. The evolution time is here Tp= 6 samples. The 
convergence ofthe true exponents (marked by dotted lines on 
Figure 3) with increasing dL is clear, whereas the spurious 
ones vary with d£. This can help in identifying the spuri-
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ous exponents. This figure shows that the absolute value of 
the false exponents is systematically larger than the absolute 
value of the largest true one. However, this property cannot 
be generalized. Tests performed on the Lorenz system, for 
example, show that the spurious exponents obtained in this 
case are also all negatives, but that they are located between 
the vanishing exponent and the most negative one. These 
results are in accordance with those previously obtained by 
other authors [8, 16, 20, 32]. From these observations, one 
is led to conclude that it is not possible to exhibit a general 
rule for the location of the spurious numerical exponents in 
the Lyapunov spectrum. 

A signal composed of two incommensurate audible fre­
quencies has been also tested. The results show that the 
algorithm is robust for finding the two-torus on which the 
trajectory takes place, by exhibiting two clearly vanishing 
exponents whatever the local dimension d£. The signal is 
made of the following frequencies: fi = 440Hz and h = 
2v'2JI = 1244.5 Hz, with equal amplitudes. A trajectory of 
40000 points has been used, with a sampling frequency Fe 
= 48000 Hz, a standard value for audio signals. The delay T 
for the reconstruction is equal to 16 samples. Figure 4 shows 
the convergence of the exponents, for a local dimension dL 
equal to 3. The signature of a two-torus is assessed by the 
presence of two zero exponents, while the remaining ones 
are all negatives. 

A commonly accepted method to discriminate the spurious 
exponents consists in computing the Lyapunov spectrum for 
a given time series, read first forward and then backward in 
time [31]. The expected behaviour is that the signs of the true 
exponents change with time reversal, whereas the spurious 
ones do not. This method has been found to give excellent 
results with time series issued from discrete maps (Henon, 
logistic and Ikeda map has been tested in this manner), thus 
leading to an undoubted identification of the spurious ex­
ponents. Unfortunately, in the case of continuous flows, the 
expected behaviour is not so clearly visible, and the iden­
tification of true and spurious exponents becomes slightly 
impossible. Thus, this method was not used in the present 
study. 

3. Application to the cymbal 

3.1. Experimental set-up 

The previously described method for determining Lyapunov 
exponents has been applied to experimental time series on a 
Zildjian thin crash cymbal (diameter: 41 cm), in order to as­
sess and quantify the chaotic regime. In this experiment, the 
cymbal is clamped at its center to an impedance head (B&K 
8001) mounted on a LDS vibration exciter. The amplitude of 
the driving force is slowly and linearly increased by modu­
lating the sinusoidal driving signal by a triangle waveform 
of very low frequency. The magnitude of the driving force 
lies within the range 1 to 20 N, depending on the driving 
frequency. The magnitude of the displacement at the edge is 
generally between 0.1 and 1 mm. However, this magnitude 
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Figure 4. Convergence of the Lyapunov exponents with the num­
ber K of iterations for a signal composed by two incommensurate 
frequencies. The two first exponents are equal to zero, the third one 
(spurious) is negative, which is consistent with the theoretical results. 
The fixed parameters are: dE= 6, dL = 3, T = 16, TF = 10. 
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Figure 5. Global temporal shape of the signal recorded at the edge of 
the cymbal, with driving frequency Fexc = 412Hz. The amplitude 
of the excitation is slowly and linearly increased until 2 min 40 s, 
time at which the driving force is suddenly removed. 

may become very large for some values of the excitation 
frequency. In ce1tain cases, edge displacements up to 1 cm 
have been observed. The analyzed signal is delivered by an 
accelerometer (B&K 4393) glued either at the edge or at a 
distance of r /2 from the center, where r is the radius of 
the cymbal, and recorded on a DAT-tape with sampling fre­
quency Fe = 48000 Hz. The duration of the recordings lies 
between 2 and 5 minutes. One example of recorded signal 
is shown in Figure 5. Sharp transitions can be seen on this 
figure, as well as the relaxation effect after suppression of 
the excitation, around t = 2 min 40 s. In order to observe 
various types of transitions, the forcing frequency is either 
close to one linear eigenfrequency of the cymbal, or signif­
icantly apart from eigenfrequencies and from low-order lin­
ear combinations of these frequencies. In a previous work, 
calculations of the correlation dimension and of the embed­
ding dimension, by means of the false nearest neighbours 
method, have been performed on these signals. The results 
show, among other things, that the dimension of the under­
lying dynamics is less than or equal to 7 [6]. 

5



As it is generally the case for experimental signals, when 
compared to computer-generated series, for example, the 
present signals exhibit a finite signal-to-noise ratio (typically 
50 dB). This signal-to-noise ratio is essentially due to the ac­
celerometer. Moreover, the reconstruction does not display a 
clear fractal form. Since the algorithm makes extensive use 
of the geometrical properties of the phase portrait (neigh­
bouring trajectories), some difficulties may be encountered 
in the detennination of the exponents. To illustrate this, a 
two-dimensional reconstruction is shown in Figure 6, for a 
driving frequency Fexc = 526Hz, after the onset of chaos. 

3.2. Results 

The results presented below were obtained in the large ampli­
tude vibration regime, characterized by a dense and broad­
band Fourier spectrum. In fact, one primary goal of this 
study was to assess that the cymbal vibration was really 
chaotic. Thus, the convergence of a positive Lyapunov expo­
nent was expected. Calculations of the Lyapunov exponents 
were made for four different driving frequencies and for two 
different locations of the accelerometer. In each si tuation, a 
portion of 40000 points of the signal is selected (which cor­
responds to a duration of 0.83 s), once the chaotic regime is 
well established. In Figure 5, for example, a portion of 0.83 s 
was selected around 2mn30s. At that time, the driving force 
is typically equal to 10 N. 

A typical curve of convergence is shown in Figure 7. This 
curve has been obtained for particular values of the involved 
set of parameters. It has been checked that the best conver­
gence is obtained for Tp around T /2 as shown previously 
on calculated time series. It is observed that the convergence 
is less pronounced as Tp is equal to T. One can notice, 
in particular, the convergence of the largest exponent, for in­
creasing values of dL, which clearly indicates the presence of 
a positive exponent in the system. Thus, it. can be concluded 
that the vibration is chaotic. One problem arising from the 
blurred trajectory of the experimental signal is that spurious 
exponents appear at positive, though relatively small, values. 

In order to validate the analysis , the results obtained are 
checked against theoretical rules given by different authors: 

• The Kaplan-Yorke conjecture [33] yields a dimension 
dKY from the spectrum of the Lyapunov exponents de­
fined by: 

d N L:~ 1 Ai 
I<Y = + IAN+ll 

where N is such as : L:~1 Ai > 0 and L:~t1 Ai < 0. 
This dimension dJ<y can be used in comparison to the 
correlation dimension d2 [34, 6] in order to get confidence 
in the calculated exponents. This also yields a guideline 
for the· selection of the local dimension dL . 

• Theoretical results show that, when computing the Lya­
punov spectrum from a time series derived from a contin­
uous dynamical system, at least one vanishing exponent 
must be present which represents the continuity of the 
trajectory. 

X 10
4 

~0 

- I 

- I 0 
s(t) 

Figure 6. Trajectory in the reconstructed phase space, with T = 16, 
for nn acceleration signal of the cymbal d riven at 526Hz, once the 
chaotic regime is established. 
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Figure 7. Lyapunov exponents in (sample)- 1
, as a function of the 

local d imension dL, for the acceleration signal recorded at the edge 
of the cymbal driven with Fexc = 526Hz. 30000 points are used for 
the analysis. The parameters have the following values: dE = 8, K 
= 2000, T = 16, TF = 10. A clear convergence to 0.020 is observed 
for the largest exponent. 

However, applications of theses rules show that one cannot 
conclude with absolute certainty on the validity of all Lya­
punov exponents. Table 11 shows the results obtained for an 
acceleration signal recorded at the edge of the cymbal, with 
Fexc = 526 Hz. These results are also shown in Figure 7 for 
dL E [3, 8). The correlation dimension for the same signal 
has already been calculated, which gives d2 = 3.6 (6). Com­
paring this value with dKY calculated with the Lyapunov 
exponents shows that, for dL 2:. 6, dKY becomes too large 
compared to d2= 3.6. Thus, the best candidates for the spec­
trum are obtained for dL equal to 4 or 5. At this stage, it 
cannot be concluded with certainty which of these two spec-
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Table 11. Calculated Lyapunov exponents for three different values of the local dimension dL. for the cymbal driven at 526 Hz, and with the 
acceleration measured at the edge. The length of the experimental sequence is equal to 40000 points. The other fixed parameters are: ds = 8. 
T = 16, TF = 10, K = 2000. The exponents are given here in normalized units with respect to the sampling time, i.e. in sample- 1. 

dL Lyapunov exponents (in sample - I) dKY 

4 0.01936 0.00157 -0.00130 -0.06571 3.12 

5 0.01979 000349 -0.00334 -0.01989 -0.09271 4.02 

6 0.02060 0.00625 -0.00088 -0.00938 -0.03393 -0.10969 4.55 

Table Ill. Calculated Lyapunov exponents in sample- 1 for the cymbal driven at 412Hz, with a time series of 40000 points. The fixed 
parameters are: ds = 8. T = I 0, TF = 8, K = 2000. 

dL Lyapunov exponents (in sample - I) dKY 

4 0.02325 0.00001 -0.01779 

5 0.02457 0.00636 -0.00582 

Table IV. Correlation dimension d2 , embedding dimension ds and 
greatest Lyapunov exponents .X. in (ms)- 1

, for four different driving 
frequencies. Each Lyapunov exponent calculation has been made 
with a time series of 40000 points, using a quadratic fit. 

F eo;c (Hz) Recording d2 dE .X (ms)- 1 

Position 

412 r/2 3,4 5 1,15 ± 0.01 

412 edge 2,9 5 0.82 ± 0.02 

440 r/2 3,8 5 I, 38 ± 0.02 

526 edge 3,6 5 0, 94 ± 0.01 

385 edge 4,6 7 0, 75 ± 0.01 

385 r/2 4,5 6 1.42 ± 0.06 

tra is the most valid. A similar discussion can be made for 
Fexc = 412 Hz. Table Ill shows the results for dL = 4 and 
5 , which are here also the best possible candidates. Applica­
tion of the rule related to the p resence or not of a vanishing 
exponent in the spectrum could lead to the conclusion that 
the exponents obtained with dL = 4 are right. However, the 
correlation dimension of this signal is equal to 3.4, and thus 
the Lyapunov spectrum calculated with dL = 5 cannot be 
completely rejected. 

In view of the results obtained in the two typical cases pre­
sented in Table ll and in Table Ill, one can be confident in the 
estimation of the largest exponent but not in the relevance of 
the other exponents in the spectrum. For these reasons, it has 
been decided to limit the present analysis to the convergence 
of the largest exponent. 

The results obtained for four different driving frequencies 
are summarized in Table IV, together with the correlation 
dimension d2 and the minimum embedding dimension dE to 
use, given by the false nearest neighbours. This Table shows 
that a positive Lyapunov exponent has been found in each 
case, which is certainly the strongest indication that the sys­
tem really exhibits chaos, since the calculation of Lyapunov 
exponent is more reliable than the correlation dimension. 

-0.08425 3.06 

-0.02460 -0.09147 4.02 

The precision given in this Table for the largest Lyapunov 
exponent is just the stan dard deviation calculated on the 
last I 000 iterations. The calculations are made typically with 
K E [1 500, 2500] iterations, and the convergence is obtained 
in less than 1000 iterations. Figure 4 shows an example for 
a theoretical case (two incommensurate frequencies), where 
it turns out that 1500 iterations are largely sufficient for the 
convergence. Finally, it can be noticed in Table IV that the 
exponent<: are of the same order of magnitude for all different 
driving frequencies. 

4. Route to chaos 

4.1. Ruelle-Takens theory 

In this section, attention is paid to the characterization of ex­
perimental transition scenarii from quasiperiodicity to chaos 
observed in the vibrations of the cymbal submitted to sinu­
soidal driving force with increasing amplitude. Calculation 
of the Lyapunov spectrum during the transition, as well as 
power spectrum analysis, are used for identifying the route 
to chaos observed. This section starts with a brief survey on 
the Ruelle-Takens theory. The interested reader is referred to 
dedicated references for a complete description of the most 
classical routes to chaos and of their general properties (see, 
for example, [35, 36]). Specific routes to chaos (such as pe­
riod doubling, quasiperiodiciry, in termittencies, crises, .. . ) 
have been extensively studied in the past, on both theoretical 
and experimental viewpoints. These routes show, in partic­
ular, that the underlying mechanisms are governed by some 
universal laws. In this context, the Ruelle-Takens theory pos­
tulates that a limited number of Hopf bifurcations are in­
volved in the transition from a stationary state to a chaotic 
state, for any physical system [37, 38]. In other words, this 
theory establishes that, if a system exhibits three Hopf bifur­
cations, then there is high probability for this system to be 
chaotic with a strange attractor. 
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Table V. Calculated Lyapunov exponents before the onset of chaos, for the cymbal driven at Fexc =440Hz. The acceleration is measured at 
r/2. The presence of two vanishing exponents is clearly observed (the first two ones), indicating the presence of a two-torus. The motion is 
quasi periodic. 

dL Lyapunov exponents (in sample - I) 

2 0.00034 -0.01823 

3 0.00104 0.00006 

4 0.00095 -0.00025 

5 0.00063 -0.00032 

6 0.00039 -0.00014 
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Figure 8. Reconstructed trajectory and 
power spectrum at three successive instants 
of time, showing three typical phases of the 
transition to chaos. The cymbal is driven 
at Fexc = 440Hz and the acceleration is 
recorded at r /2. 

In physical systems, the following characteristic features 
are thus expected, as the control parameter of the system in­
creases (in our case, the magnitude of the driving force): 
Initially, The power spectrum of the observed variable (here, 
the acceleration of a given point on the cymbal) shows one 
peak at a given frequency !I (plus, eventually, some harmon­
ics). The phase portrait will be a simple closed curve, theLya­
punov spectrum will display a single zero exponent, the other 
ones being negatives. Then, after a first Hopf bifurcation, the 
Fourier spectrum is made of two frequencies fi and fz, and, 
in addition, of all combinations f = md1 + m2!z. with 
(m 1 , mz) E Z 2

. The phase space trajectory is located on a 
two-torus. At this stage, one should make a clear distinction 
between two cases. The first case corresponds to mode lock­
ing which occurs when the ratio between the two frequencies 
ft and fz is rational. As a consequence, the trajectory on the 
torus will close itself after a finite number of cycles. In the 
second situation, the ratio between these two frequencies 
is irrational: the frequencies are incommensurate, and thus 
the torus is densely covered by the trajectory which never 
closes itself. In this case, the Lyapunov spectrum exhibits 

clearly two zero exponents. When the third Hopf bifurcation 
is about to appear, the phase portrait shows typical foldings, 
indicating that the two-torus will be destroyed, and hence 
that the system will gain an additional dimension [39, 40]. If 
another Hopf bifurcation arises (i.e. if a third frequency fa is 
to appear in the power spectrum), then a "broad-band noise", 
which is characteristic of chaos, is observed, and the torus 
breaks up in favor of a strange attractor. It will be shown 
in the next section that the experimental signals recorded on 
the cymbal show, to variable extent, all the abovementioned 
characteristics. 

A clear survey of the transition scenarii can be found 
in [35]. Details on the quasiperiodicity routes to chaos are 
studied in [41, 42]. 

4.2. Mode-locking and quasiperiodicity 

Figure 8 shows the phase portrait and the power spectrum of 
the acceleration signal recorded on the cymbal at r /2, at three 
successive instants of time. The driving frequency is F exc = 
440 Hz. In the first raw of the figure, the vibratory motion of 
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the cymbal is weakly nonlinear. The power spectrum shows 
a peak at f = Fexc. and some harmonics. The reconstructed 
trajectory is a simple closed loop. The Lyapunov spectrum 
exhibi ts one vanishing exponent (,\ = 0.0 ± w-4 , corre­
sponding to the continuity of the flow), the other ones being 
negatives. By increasing the amplitude of the driving force, 
a Hopf bifurcation occurs. Therefore, a second frequency 
and combinations between Fexc and this new frequency be­
come visible. The motion is quasi periodic. The phase portrait 
displays typical foldings indicating that the trajectory is lo­
cated on a two-torus which is about to be destroyed. With 
increasing amplitude, a second bifurcation is observed, and 
a broadband spectrum indicates the onset of chaos, as it can 
be seen on the phase portrait also. 

A zoom on the low-frequency part of the power spectrum 
in the quasiperiodic state is shown in Figure 9. The iden­
tification of a quasiperiodic motion can be made here by 
noticing that all frequency peaks, in this part of the spec­
trum, can be written as the combination f = m 1 h + m2h, 
with h = Fexc :::: 440 Hz, and another fixed frequency h :::: 
698 Hz. This frequency h corresponds here to one particular 
eigenfrequency of the cymbal. This result is in accordance 
with one possible interpretation of the Ruelle-Takens sce­
nario presented in [36): the Hopf bifurcation occurs when 
one mode of the system is destabilized and becomes active 
(ie the real part of the eigenvalue of this eigenmode be­
comes positive). The vibratory motion is then governed by 
two incommensurate frequencies. Calculations of the Lya­
punov exponents were made j ust before the onset of chaos. 
The Lyapunov spectrum clearly displays two vanishing ex­
ponents (see Table V). This indicates that the trajectory is 
located on a manifold topologically equivalent to a two-torus 
and confirms that the transition to chaos is obtained by the 
break-up of a two-torus. If another eigenfrequency becomes 
active with increasing amplitude, then the motion becomes 
chaotic, as shown in the last raw of Figure 8, and as has been 

1000 

._N 
I ... -..,. 

1200 

Figure 9. Power spectrum of the previous signal be­
low 1200 Hz during the quasiperiodic state, with 
Fexc =440 Hz. All frequency peaks can bewrittenas 
linear combination of h = Fe:r.c and h =698Hz, 
where /2 corresponds to one eigenfrequency of the 
cymbal. 

shown by the presence of one positive Lyapunov exponent 
(see section 3). 

Similar observations and calculations were made for other 
driving frequencies, for which there is no evident relation­
ship with the eigenfrequencies of the cymbal (Fexc = 412, 
526 and 385 Hz have been tested). Moreover, experiments 
at a fixed level of excitation (which is sufficient to reach the 
quasi periodic state), and with slight variations of the excita­
tion frequency, have been conducted. Hysteresis cycles were 
clearly observed, wi th different resonance curves, depending 
on F exc is increased or decreased. 

Finally, some experiments were conducted with a driv­
ing frequency equal to twice one particular eigenfrequency 
of the cymbal. In this case, as expected, the following be­
haviour is observed: a mode-locking occurs between Fe:xc 

and the eigenfrequency defined by fa. = Fexc/2. This result 
can be seen in Figure I 0, where the driving frequency is Fe:xc 

::::248Hz, and the eigenfrequency corresponding to the (4,0) 
mode of the cymbal is 124 Hz. An energy transfer from the 
low-frequency to the high-frequency range is clearly visible 
in the power spectrum shown in figure I 0. Here, the motion 
is phase-locked in a ratio 2: I. As the amplitude ofthe forcing 
frequency increases, the system suddenly changes to chaotic 
behaviour which is characterized by a positive Lyapunov ex­
ponent, as it has been shown in Section 3 (,\ = 0.3 ± 0 .1 
(ms)- 1. This value was not reported in table IV because the 
recorded signal was to short to yield sufficient accuracy to 
be extremely confident in the result). This result suggests 
that the system is strucLUrally unstable after the second Hopf 
Bifurcation, and that no quasiperiodicity involving three dif­
ferent frequencies occurs. With increasing amplitude of the 
driving force, the two-torus directly breaks up in favor of a 
strange attractor. 

In conclusion, the whole set of analysis tools used for 
characterizing the transition scenario (Fourier and Lyapunov 
spectrum, phase portrait) indicates that the main features of a 
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Ruelle-Takens scenario are present. However, at this stage of 
the work, the number of analyzed signals is limited, and thus 

no g(o6a( (aws sucn as tne Farey tree at tne onset of cnaos 
[41, 421. can be clearly exhibited. 

5. Conclusion 

In this paper, a study on the vibratory motion of a cymbal 
has been presented, using nonlinear signal processing tools. 
Special emphasis has been put on the computation of the 
Lyapunov exponents from experimental time series, since it 
is one of the most re liable and most relevant invariant in or­
der to detect and quantify chaos. In this context, an algorithm 
for estimating the Lyapunov spectrum has been developed. 
Specific features were used for improving the quality of the 
estimation. First, a second-order Taylor expansion has been 
used in order to improve the accuracy with which the ex­
ponents are given. It has been shown numerically that this 
quadratic fit avoids the presence of spurious exponents which 
are multiples of the true ones. Second, a time step for the evo­
lution of the neighbourhood, which is different from the time 
step used for the reconstruction, has been selected. This also 
improves the accuracy of the results. 

The ability of the method has been clearly shown on the­
oretical time series. In the case of experimental time series, 
only the largest Lyapunov exponent has been clearly exhib­
ited, like it is most often the case in adverse experimental 

context. 
The cakulat ions of the Lyapunov exponents were made 

before the chaotic regime. This yields additional arguments 
for the identification of the observed transition scenario. The 
exponent~. together with the observation of spectral peaks 
combinations, allows clear confidence in the fact that the 

system is subjected to a transition from quasiperiodicity to 
chaos. Depending on the value of the driving frequency, 
mo<fe-(ocKing and quasiperiodic states have been observed, 

as well as the succession of two Hopf bifurcations from the 

Linear to the chaotic vibration. 
The following general features of the phenomena have 

been underlined. First, a mode-locking is observed in the case 
of a driving frequency equal to twice the value of one particu­
lar cigenfrequency of the cymbal. Second, a quasiperiodicity 
is observed for other driving frequencies. This quasiperiod­
icity is associated to the combination of spectral peaks and 
to typical foldings of the trajectory in the phase space. In 
this case, the presence of two vanishing exponents in the 
Lyapunov spectrum indicates the presence of a two-torus. 

When the ampli tude of the forcing frequency increases, 
the two-torus breaks in favor of a strange attractor, whose 
presence is clearly identified by a positive Lyapunov expo­
nent. This completes the description of the transition scenario 
for the cymbal, and quantifies the chaotic regime in terms of 
magnitude of the largest Lyapunov exponent. 
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