STRONG-VISCOSITY SOLUTIONS: SEMILINEAR PARABOLIC PDEs AND PATH-DEPENDENT PDEs

Abstract : The aim of the present work is the introduction of a viscosity type solution, called strong-viscosity solution to distinguish it from the classical one, with the following peculiarities: it is a purely analytic object; it can be easily adapted to more general equations than classical partial differential equations. First, we introduce the notion of strong-viscosity solution for semilinear parabolic partial differential equations, defining it, in a few words, as the pointwise limit of classical solutions to perturbed semilinear parabolic partial differential equations; we compare it with the standard definition of viscosity solution. Afterwards, we extend the concept of strong-viscosity solution to the case of semilinear parabolic path-dependent partial differential equations, providing an existence and uniqueness result.
Type de document :
Pré-publication, Document de travail
2019
Liste complète des métadonnées

https://hal-ensta.archives-ouvertes.fr/hal-01145301
Contributeur : Francesco Russo <>
Soumis le : vendredi 8 mars 2019 - 19:01:50
Dernière modification le : lundi 18 mars 2019 - 16:09:26

Fichiers

ComparisonViscosityOsaka2017_A...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01145301, version 3

Citation

Andrea Cosso, Francesco Russo. STRONG-VISCOSITY SOLUTIONS: SEMILINEAR PARABOLIC PDEs AND PATH-DEPENDENT PDEs. 2019. 〈hal-01145301v3〉

Partager

Métriques

Consultations de la notice

3

Téléchargements de fichiers

2