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1Unité de Mécanique, École supérieure de Techniques avancées - Chemin de la Hunière, 91761 Palaiseau Cedex,
France, EU
2Department of Research and Innovation, PSA Peugeot-Citroen - 2 route de Gisy, 78943Vélizy-Villacoublay,
France, EU

Abstract – The drag fluctuations of a disk placed on the axis of a turbulent incompressible jet
are studied at Re= 70000. Statistics and spectra have been obtained for different disk sizes. A
significant spatial averaging effect is observed in the symmetrization of probability distribution
function and in the low-pass filtering of spectra. These effects are associated with a redistribution
of the high-frequencies energy to the low frequencies. It is shown that this redistribution is done
in such a way that the rms value of the drag fluctuations increases linearly with the disk surface.
These results concerning the drag fluctuations are compared and found to be consistent with
fluctuations of a global kinetic energy extracted from the turbulent field in front of the disk.

Introduction. – Fluctuations of global quantities in
out-of-equilibrium systems are of general interest. For the
last ten years, a global quantity as the power injected in
a closed turbulent flow has been thoroughly studied [1–7].
The fluctuations are not symmetric [1,8] but tend to
symmetrize as the degrees of freedom are increased [5,8,9].
In the closed flow, the number of degrees of freedom
strongly depends on the aspect ratio of the experiment
that determines the number of large-scale structures [5,9].
Hence, the central limit theorem, implying a symmetriza-
tion of the fluctuations together with a reduction of the
fluctuation rate as the number of degrees of freedom is
increased is satisfactorily verified [5].
There are far fewer experimental results concerning the

case of open turbulent flows which are also of general inter-
est for direct industrial applications. For instance, ques-
tions of practical importance are: how do the global force
fluctuations exerted on a body under turbulent conditions
behave with different body sizes and flow characteristics?
Is there a smoothing effect of the fluctuations due to a
spatial averaging of the turbulent scales? Is the central
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limit theorem relevant for this case? For open turbulent
flows, we are actually only aware of the work of Ciliberto
et al. [10] who considered the drag fluctuations of a disk
placed in a fully turbulent jet. The authors were studying
the temporal averaging of the drag fluctuations in order to
bring some experimental evidence of the Gallavotti-Cohen
fluctuation theorem (see references in [10]). This theorem
predicts the ratio of the probabilities for positive- and
negative-energy injection rates (a quantity related to the
instantaneous drag) averaged over a variable time window.
In order to observe negative events of drag (an essen-
tial ingredient for the fluctuation theorem), the authors
placed the disk in a very specific region, not on the axis of
the turbulent jet where the instantaneous drag is always
positive (as we will do in this work), but sufficiently far
from the axis to obtain some negative drag events. While
the work of Ciliberto et al. [10] was a temporal averaging
study, the goal of the present work is a spatial averaging
study of the turbulent scales impacting on the disk surface.
We considered two cases in a turbulent jet flow at a fixed

Reynolds number. In the first case, the global quantity is
directly the drag that the turbulent jet exerts on a disk
of diameter D. In the second case, the global quantity
is a kinetic energy contained in a square area in front
of the disk. The aim of this work is to study effects of
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Fig. 1: Experimental setup. (a) Setup for drag and local velocity
measurements. (b) PIV measurements setup with the disk
having the larger size D= 40mm. The camera field dimensions
are fixed, while the size of the averaged area (see text) displayed
by a dashed line is adapted to the disk diameter.

the spatial averaging of the turbulent scales on the drag
fluctuations of the disk. The question we address is: what
are the properties of these drag fluctuations as the disk
size increases?

Experimental setup. – The turbulent air jet is
formed by a nozzle of 20mm in diameter. We used five
disks having diameters of 10mm, 15mm, 22mm, 30mm
and 40mm. Each disk was successively placed one meter
from the nozzle, centred on the jet axis and perpendicular
to it (fig. 1). At this location and without disk, the free-
jet width is δ= 110mm, the mean velocity taken on the
jet axis is 〈u〉= 10m · s−1, the fluctuation rate defined as
urms
〈u〉 is 28%, and the corresponding Reynolds number

based on the jet width is Re= 〈u〉δ
ν
∼ 70000. At this

location, the different characteristic scales of the jet are the
integral scale L∼ 55mm (based on the jet’s half-width),
the Taylor micro-scale λ∼ 3.5mm and the Kolmogorov
scale η∼ 0.1mm. All the disks we use are smaller than
the integral scale of the flow and much larger than either
the dissipative scale or the Taylor micro-scale.
Force fluctuations are performed using a highly sensi-

tive quartz force sensor of type 9203 from Kistler measur-
ing compressive force from few mN to 500N. The sensor
is mounted on the disk in order to be sensitive to the
force component that is parallel to the main flow direc-
tion u. This component corresponds to the drag exerted
on the disk (see fig. 1). As we need a high-resolution
frequency of the drag fluctuations, particular attention
has been given to the measurement itself. Indeed, fluc-
tuations of drag are so weak especially at high frequen-
cies, that any vibrations of the mechanical structure of
the sensor support will considerably mask the true aero-
dynamic drag. Many different materials were tried for the
holding stand until the force sensor was directly placed
on a block of dough whose property is to be exclusively
plastic (non-elastic) and the disk was stuck to the force
sensor with bee wax. There is no screw, no mechanical
articulation in our system. This special setup has allowed
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Fig. 2: (a) Frequency response of the force transducer measured
as explained in text while the transducer is loaded with the
D= 40mm disk. (b) Comparison of power spectra of local
velocity measurement (hot wire) and drag fluctuations of the
disk of diameter D= 10mm.

us to push away all the resonances, which of course still
exist, as far as we can. From this particular setup, the
frequency response is directly measured using an elec-
tric coil supplied with a white noise current and placed
in front of the disk. The random electromagnetic force
suffered by the magnet is then compared to the initial
white noise excitation. Figure 2(a) displays the frequency
response obtained with the disk of diameter D= 40mm.
From this result, we can obtain reliable measurements of
the force fluctuations up to 1200Hz. For comparison in the
work [10], it is the response of a flexion that is measured
and the cut-off is much lower about 30Hz. On the other
hand, our transducer is not sensitive to the low-frequency
fluctuations, the corresponding high-pass filtering is about
10Hz. In the following, we shall call δF (t) the drag fluc-
tuations.
A hot-wire probe is used to obtain a local kinetic energy.

The measurement point is localized on the jet axis, 10mm
upstream from the disk as displayed in fig. 1(a). The hot
wire is always removed when drag is measured to avoid any
contaminations. The hot wire is placed in such a way to
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be sensitive to
√
u(t)2+ v(t)2 which is the modulus of the

velocity projected in a plane containing the jet axis and the
measurement point. We denote by ε(t) = 12 (u(t)

2+ v(t)2)
the quantity corresponding to a local kinetic energy and
by δε(t) its fluctuation about the mean.
Finally, we perform Particle Image Velocimetry

measurements (using a LAVISION PIV setup) to extract
the instantaneous velocity field whose components are
u and v (fig. 1(b)). The light sheet is produced by two
lasers Nd :Yag of 50mJ per pulse. A 12-bit camera with
a CCD resolution of 1200× 1600 is used. The seeding is
insured by an olive oil spray placed at the entrance of
the fan that generates the jet. The measurements area
covered by the camera field is 80mm× 60mm and the
corresponding image resolution is 0.05mm per pixel. For
the inter-correlation postprocessing of the images, we
use interrogation windows of 16 pixels× 16 pixels. The
resolution for the velocity measurements is then 0.8mm.
The square area of dimensions D×D denoted as the
“averaged area” in fig. 1(b) is the surface on which spatial
averaging will be performed (see later in the text). In
the following, symbols 〈. . .〉 denotes temporal averaging.
During a PIV acquisition, the sampling frequency of the
velocity field is not constant in time and may fluctuate
between 3Hz and 10Hz. The PIV setup does not solve the
dynamic of the large-scale structures since their typical
turnover time is about LU ≈ 0.05 s. Temporal statistics are
performed over 2000 velocity fields that can reasonably
be assumed as independent.

Results. – We first use the smallest disk (D= 10mm).
We measure the fluctuating drag, δF (t) and the local
velocity with the hot wire

√
u(t)2+ v(t)2 located

upstream from the disk (see fig. 1(a)). Figure 2(b) shows
the comparison between power spectra of the local veloc-
ity (which correspond to a kinetic-energy spectrum) and
drag measurements. The kinetic-energy spectrum falls as
the classical f−5/3 law as expected in the Kolmogorov
theory. The power spectrum of the drag fluctuations is
very similar to that of the local kinetic-energy spectrum
in the range of the low frequencies. A different behavior
is observed for the high-frequencies range where the drag
fluctuation power spectrum decreases more abruptly than
the kinetic-energy spectrum.
In fig. 3, the Probability density function (Pdf) of the

reduced drag fluctuation δF ′ obtained for the smallest disk
D= 10mm is compared to the Pdf of the local kinetic-
energy fluctuations δε′ measured from the local velocity
probe. Both Pdfs are also very similar, especially the tail
for positive events that superimposes satisfactorily. The
Pdf asymmetry of the kinetic energy is at first order a
consequence of the quadratic non-linear deformation of the
velocity Pdf which is mainly Gaussian. This is confirmed
by the good superimposition on the same graph of a Chi2
distribution. Although the asymmetry sign is in agreement
with the previous result of Ciliberto et al. [10] for drag
statistics, we do not observe exponential tails as they do.
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Fig. 3: Comparison of the Pdf of the reduced drag fluctuations
δF ′ = δF√

〈(δF )2〉 obtained from the disk of diameter D= 10mm

with the Pdf of the reduced local kinetic-energy fluctuations
δε′ = δε√

〈(δε)2〉 obtained from the local hot-wire measurements

and a Chi2 distribution.

This difference is related to the important role that plays
the large-scale flow inhomogeneity: our disks are placed on
the jet axis, while in Ciliberto et al. [10] the disk is placed
at a distance of four disk’s diameter off the jet axis. From
the spectra in fig. 2(b) and the Pdfs in fig. 3, we find that
the drag fluctuations behave, at first order as the fluctu-
ations of the local kinetic energy in the jet. The result is
consistent with the assumption that the drag fluctuations
are simply associated with the pressure head fluctuations
on the disk. In order to check this idea, we placed the disk
in a uniform flow (wind tunnel of 400mm× 400mm in
test section) having the same velocity say, 10m/s. In this
case the drag fluctuation are too small to be measurable.
We then conclude that drag fluctuations due to the wake
are negligible compared to that of the forehead disk when
the incoming flow is the turbulent jet. We can establish
a simple relationship, based on dimensional arguments,
between the head pressure and the kinetic energy. For a
uniform incoming incompressible fluid of velocity U , the
pressure head on the disk is given by the Bernoulli’s theo-
rem, P = P0+

1
2ρU

2, with P0 the free-stream pressure and
ρ the air density. Replacing U by u(t), we obtain that the
pressure head fluctuations, and hence the drag fluctua-
tions in our case, depends on the kinetic-energy fluctua-
tions in the bulk upstream from the disk. This is exactly
what is revealed by fig. 3. Assuming that the velocity fluc-
tuations are small compared to the mean velocity in the
jet, one obtains that δP (t)∼ ρ〈u〉δu(t). In this case, fluc-
tuations of the local velocity are proportional to the drag
fluctuations. This dimensional relation explains why we
observe similar spectra in fig. 2(b). Of course Bernoulli’s
theorem does not hold rigorously in our case, our result
only expresses a conservation law between pressure and
kinetic-energy variation. In the detail the spectrum of the
local velocity in fig. 2(b) decreases more abruptly at high
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Fig. 4: (a) Evolution of the Pdfs of the reduced drag fluc-
tuations δF ′ = δF√

〈(δF )2〉 as a function of S. (b) Evolution

of normalized drag spectra (each power spectrum has been
divided by the corresponding disk surface) as a function of S.
The arrows indicate the curves legend (see text).

frequencies than that of the drag fluctuations. This faster
decrease is related to a spatial averaging effect. The effect
is confirmed in the following when the size of the disk is
increased.
The magnitude of the disk surface S influences the

statistics of the drag fluctuations. The Pdfs of the drag
in fig. 4(a) tend to symmetrize as S increases: the tail
at large positive drag fluctuations is shortened while the
other tail for the negative fluctuations is reinforced (this
observation is displayed by arrows in fig. 4(a)). The effect
is weak but very significant since the hierarchy of the
tails follows the hierarchy of the disk diameters. While
the Chi2 distribution represents well the Pdf for D=
10mm (fig. 3), it becomes less and less accurate as D
increases. In fig. 5(a), we plot the skewness 〈δF ′3〉 vs.
S/SL, where SL = π(

L
2 )
2 is the characteristic surface of

the integral scale impacting the disk defined from L=
55mm, the half-width of the free jet at the disk location.
We can see that the skewness decreases continuously as
the disk surface increases. The spatial averaging effect is
also clearly visible in fig. 4(b) that shows the evolution
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Fig. 5: (a) Skewness of drag fluctuations vs. the disk surface
S/SL. (b) Standard deviation vs. the disk surface S/SL. The
dashed line is a linear law.

of the power spectra of drag fluctuations with D. Each
power spectrum has been divided by the corresponding
disk surface. A cut-off frequency due to the size of the
integration surface shifts to lower values as D increases.
As the integration surface increases, scales smaller than
the integration surface naturally average and some energy
at high frequencies is then lost. While more energy related
to the small scales is lost as S increases, more energy
is created in the large scales since the plateau at low
frequencies is elevated (the effect is displayed by arrows in
fig. 4(b)). On the other hand, we find that the root-mean-
square (rms) value

√〈δF ′2〉 is linear with the surface
in fig. 5(b) or equivalently that

√〈δF ′2〉 divided by
the surface is almost constant in fig. 6(b) (squares). In
consequence of the Parseval relation, all the spectra in
fig. 4(b) have the same integral over the whole frequencies
range. The spatial averaging due to the disk size does
not smooth the fluctuations as it would be expected
from the central limit theorem. The reason should be the
interaction between the disk and the jet that is observed
as a redistribution of the high-frequencies energy (small
scales) to the low-frequencies energy (large scales) by
keeping constant the total energy of the fluctuations per
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Fig. 6: (a) Kinetic energy of the mean flow on the jet axis
(x= 0) vs. the distance to the disk y. Inset: same data but
plotted vs. y/D. (b) Rate of fluctuations of the kinetic energy
contained in a D×D area vs. D2/L2. The rate of fluctuations
of the free jet (triangles) is compared to a model of correlated
degrees of freedom having a correlation length of LC =

2
3
L�

37mm (continuous line, see text). The rate of fluctuations in
front of the disks (circles) is compared to the density of the
rms fluctuations about the mean of the drag exerted on the
disk presented in fig. 5(b) (squares).

surface unit. The jet-disk interaction strongly modifies the
turbulent mean flow by imposing a turbulent boundary
layer on the disk. In fig. 6(a), the kinetic energy of the
mean flow extracted from PIV measurements along the
jet axis, ε0(0, y) =

1
2 (〈u〉2+ 〈v〉2) decreases toward zero on

the disk. As shown in the inset of fig. 6(a), for every disk,
the decreasing laws superimpose when y is scaled by D.
The typical length scale for the turbulent boundary layer
on each disk is then simply given by D.
The last global variable we have considered is extracted

from the PIV measurements. It is a total kinetic energy
E contained in a square area of the xy-plane whose size is
equal to the disk diameter D (see fig. 1(b)) and defined as

E(t) =
∑

i,j∈D×D
(ui,j(t)

2+ vi,j(t)
2),

where (i, j) denotes the location of the velocity vector
inside the area D×D. The local velocities measured with
the PIV setup already result from a spatial averaging
over a square area of size δs= 0.08mm× 0.08mm. It
corresponds to the size of the interrogation window and
also to the mesh size of the location matrix. For each
disk, we acquired 2000 velocity fields and then obtained
2000 realizations for E. We also perform the same velocity
measurements without disk in order to characterize the
averaging effect of the free jet. In this case, we also consider
the five averaged areas corresponding to the five disk
diameters. For each realization set of E, we computed
the rate of fluctuations defined as: δErms

D2
, where δErms =√〈(E−〈E〉)2〉. This quantity is plotted in fig. 6(b) vs.

the surface of integration D2/L2 for the free jet and jet
with disks. The quantity is normalized by its magnitude
for the larger area of integration, say D= 40mm (for
which D2/L2 = 0.53). The free jet exhibits a pronounced
averaging effect, the larger the size of integration the
smaller the rms fluctuation rate.

Discussion and conclusion. – The aim of this work
was to study the consequence of the spatial averaging of
turbulence scales on the drag fluctuations of a disk placed
in a turbulent jet. The equivalence between the local
kinetic energy in front of the disk and the drag is shown
with the smaller disk (D= 10mm) by the similarities of
the Pdf (fig. 3) and the spectra (fig. 4). When the disk
size is increased, the rms fluctuations density of the global
kinetic energy computed in an area in front of the disk
behave mostly as the rms fluctuations density of the drag
(fig. 6(b)). We can then assume that the drag fluctuations
exerted on the disk are mainly governed by the global
kinetic energy contained in an area in front of the disk. In
other word, the way the drag statistics behave as the disk
size D increases should be similar to that of the statistics
of the global kinetic energy taken over an area of size D
in front of the disk.
For the free jet, the rms density fluctuations of the

global kinetic energy contained in a box decreases contin-
uously as the size of the box increases (fig. 6(b)). This
smoothing of the fluctuations is consistent with a constant
correlation length, characteristic to the free jet (propor-
tional to the large-scale length), and smaller than the box
sizes. It is equivalent to an increase in the effective number
of degrees of freedom as the box size is increased.
When a disk is introduced in the turbulent jet, the

smoothing effect of the rms density fluctuations averaging
nearly disappears (fig. 6(b)). Actually the presence of the
disk in the jet modifies the turbulent flow property in
front of the disk compared to that of the free jet. A new
correlation length, corresponding to the boundary layer
thickness on the disk is introduced. We find this length to
be proportional to the disk diameter D (fig. 6(a)), which
may be consistent with a constant number of degrees of
freedom irrespective of the disk diameter. Although we do
not observe spatial averaging effect on the rms density
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fluctuations of the drag, the low-pass filtering of the
spectra (fig. 4(b)) and the Pdfs symmetrization (fig. 4(a))
indicate, on the other hand, a significant disk’s size
effect. This low-pass filtering is actually associated with
a redistribution of the high-frequency energy fluctuations
to the low frequencies. In conclusion, increasing the body
size in a turbulent jet will not lead to a reduction of its
drag fluctuation rate. The reason is that the body imposes
a new correlation length proportional to its size which acts
on the drag as a low-pass filter and symmetrizes the PDF,
but keeps the fluctuation rate constant.
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