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HJB approach for a multi-boost launcher trajectory

optimization problem∗

O. Bokanowski† E. Bourgeois‡ A. Désilles§ H. Zidani¶

June 7, 2016

Abstract

This work deals with an optimization problem for three-stage space launcher. The
mission of the launcher is to put a given payload on the GEO orbit with the minimal
propellant consumption. The considered flight sequence performs two boosts. The first
one steers the launcher to a given GTO orbit. Then, after a ballistic flight, a second
boost is used to perform the orbit transfer maneuver from the GTO to the GEO. We
decompose the global optimization problem into two optimal control problems and we apply
in this context the Hamilton-Jacobi-Bellman (HJB) approach together with a parameter
optimization procedure.

Key words. optimal trajectory, optimal control problem, Hamilton-Jacobi approach,
reachability analysis.

1 Introduction

This paper concerns the design of a global trajectory optimization procedure for a space shuttle

of type Ariane 5, with the aim of steering a given payload from Earth to the GEO orbit.

Trajectory optimization for aerospace launchers has been extensively studied in the literature,

see for instance [3, 9, 12, 2] and the references therein.

Here it is assumed that the launcher performs two boosts. A first boost steers the launcher

to a given GTO. Then, after a ballistic phase, a second boost is used to perform the transfer

maneuver from the GTO to the GEO. The optimization problem aims at minimizing the final

consumption of the launcher. More precisely, the complete flight sequence is composed of 4

important phases (atmospheric phase, propulsion with first stage until exhaustion of the ergol,

propulsion with the first stage until injection on a GTO, ballistic flight until injection on GEO).
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Our approach is based on the reformulation of the trajectory optimization problem as a reach-

ability problem that we solve by using an efficient method based on HJB approach in optimal

control theory [10, 1]. A similar approach has been introduced by the authors in [5] and [4]

where the orbital transfer maneuver from the GTO to the GEO is assumed to be of impulsive

type. This hypothesis allows to estimate the amount of propellant needed to the orbital trans-

fer using an explicit Tseolkovsky formula. In the present paper the problem is considered in

more complete setting where a boost is needed to perform the orbital transfer. The duration of

each boost is not fixed and is considered as an optimization parameter. The problem involves

two more optimization parameters that are the shooting azimuth and the inclination speed. In

addition to these parameters, the launcher is controlled by two functions; namely, the incidence

and sideslip angles (time-dependent functions) that are also optimization variables.

This challenging problem presents several difficulties for the implementation of Hamilton-

Jacobi-Bellman (HJB) approach. In the previous work [5] the authors have developed an inter-

esting approach to combine the HJB framework with parameter optimization methods without

increasing the state space dimension. it is shown here that this method can be applied for the

general two-boost problem. Moreover, let us stress on that the proposed optimization proce-

dure is supported by theoretical results that show the convergence of the procedure to a global

optimal solution (see the references in [5]).

2 Physical model

Let O be the center of the Earth. Denote by rT the Earth’s mean radius. Consider the

frame RI = (O,~iI ,~jI ,~kI) centered at O and such that the vector ~kI is co-linear with the

North-South axis of rotation, the vector ~iI is located in the equatorial plane of the Earth

and points to the Greenwich meridian at an elected date set here as t = 0. The vector ~jI

completes the orthonormal frame. This frame is considered as inertial. Consider also the frame

RR = (O,~iR,~jR,~kR) that coincides with RI at time t = 0 and that is rotating with the Earth

around the axis ~kI = ~kR with the angular velocity Ω. Let G be the mass center of the vehicle and

~V it’s velocity. The state of the spacecraft can be characterized by the Cartesian coordinates

( ~X, ~V ) in the frame RR with

~X =
(
x, y, y,

)
, ~V =

(
Vx, Vy, Vz,

)
.

Let us define also the vertical local frame RV = (G,~iV ,~jV ,~kV ) centered at G such that ~kV

is co-linear with ~rG and pointing in the same direction. The vector ~jV is in the orthogonal

plane to ~kV and pointing to the local North. The third vector ~iV := ~jV ∧ ~kV is defined in

such way to complete the orthonormal frame. The launcher may be also represented by the

spherical coordinates of the position of G in RR and those of the velocity in the frame RV .
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These coordinates will be denoted by (r, L, l, v, χ, γ). The formulas that allow to pass from one

coordinate system into another are classical and can be found in [11]. The total mass of the

launcher will be denoted as m ≥ 0.

2.1 Axis, angles, and forces

The launcher is subject to different forces that we describe here below.

Gravitational force: The gravitational field is defined as −→g = − µ
r2

[
I + J2

(
rT
r

)2
A
]
er, where

µ is the Earth’s gravitational constant, J2 is the second order term of the harmonic expansion of

the gravitational field and I is identity matrix. The matrix A in the definition of the gravitational

field is defined as follows:

A =

 1− 5 sin2(l) 0 0
0 1− 5 sin2(l) 0
0 0 3− 5 sin2(l)


So that the gravitational force is

−→
Fg = m−→g .

Aerodynamic forces: It is assumed here that the plane of symmetry of the vehicle coincides

with the plane (~iV ,~kV ) in the reference frame RV . The aerodynamic forces are:

• The drag force:
−→
FD opposite to the velocity

−→
V .

• The lift force:
−→
FL ' 0 is neglected in this application due to the technical specifications

of the considered launcher.

Thrust force: It is assumed that the direction of the thrust force coincides with the axis of

the launcher. The orientation of the thrust is defined by the incidence angle α and the sideslip

angle δ. The modulus of the thrust force is given by FT (r) = βg0Isp − SP (r) where g0 = 9.81

ms−2, P (r) is the atmospheric pressure, β is the propellant flow rate, Isp is the specific impulse

and S is the surface.

Coriolis force
−−→
FCO and centripetal force

−−→
FCP . These functions are defined by:

−−→
FCO = 2m

−→
Ω ∧
−→
V and

−−→
FCP = m

−→
Ω ∧ (

−→
Ω ∧
−−→
OG),

where
−→
Ω is the Earth’s angular velocity. These two forces are important to be taken into account

as far as the launchers’s trajectory is represented in a relative reference frame and not in the

inertial one.

2.2 Motion’s equations

It follows from the Newton’s law of the motion that:

d ~X

dt
= ~V , m

d~V

dt
=
−→
Fg +

−→
FD +

−→
FL +

−→
FT −

−−→
FCO −

−−→
FCP . (1)
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Let us denote 
FCv = Ω2r cos `(sin γ cos `− cos γ sin ` cosχ)
FCγ = 2Ω cos ` sinχ

+Ω2r cos `(cos γ cos `+sin γ sin ` cosχ)
v

FCχ = Ω2r
v

sin ` cos ` sinχ
cos γ − 2Ω (sin `− tanγ cos ` cosχ)

the components of the vector
−→
FC = −

−−→
FCO −

−−→
FCP in spherical coordinates. Straightforward

calculations yield to the motion’s equation in the spherical coordinates:

dr

dt
= v sin γ

d`

dt
=
v

r
cos γ cosχ

dv

dt
= −gr sin γ + g` cos γ cosχ+

FT (r)

m
cosα cos δ

−FD(r, v, α)

m
+ FCv

dγ

dt
= − cos γ

(gr
v
− v

r

)
− sin γ cosχ

g`
v
− FT (r)

mv
sinα

+FCγ

dχ

dt
=
−g` sinχ

v cos γ
− v

r
cos γ tan ` sinχ+

FT (r) cosα sin δ

mv cos(γ)

+FCχ (2)

where we have isolated the differential equation for the component L:

dL

dt
=
v

r

cos γ sinχ

cos `
. (3)

2.3 Mass evolution

The evolution of the mass m(t) is also needed in order to get a complete model. This evolution

is given by the ODE:

ṁ(t) = β(t) (4)

where the function β is known and represents the consumption flow rate and depends on the

launcher’s parameters. In the sequel, we denote by βEAP > 0, βE1 > 0 and βE2 > 0 the mass

flow rates for the boosters, the first and the second stage of the launcher respectively. For sake

of simplicity, we shall consider that these rates are known constants.

2.4 Dynamical system

As mentioned in the previous subsection, the motion of the Longitude variable L can be isolated

from the other variables (indeed, none of the other variables depend on L). So, in the sequel,

the state variable will be defined as (x,m) ∈ R6, with x = (r, l, v, χ, γ). During the phases where

one or more engines are on, the system is controlled by the direction of the thrust force. Let

U := [αmin, αmax]× [δmin, δmax],
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be the control set with constants αmin/max and δmin/max such that [αmin, αmax] ⊂ [−π2 ,
π
2 ] and

[δmin, δmax] ⊂ [−π, π]. The control variable vector will be denoted by u = (α, δ) ∈ U . Set Uad
as the set of all admissible controls:

Uad := {u := (α(.), δ(.)) : measurable function
on [0,+∞) that takes values in U}.

The differential equations governing the evolution of the dynamical system depend on the phases

of the flight.

Phase 0. The mission of the launcher starts when the vehicle leaves the launch base. Both

boosters along with the stage E1 are ignited and consume propellant with flow rates βEAP and

βE1 respectively. The initial mass of the launcher is known:

Minit := MEAP +ME1 +ME2 +mF︸ ︷︷ ︸
Structure

+ mCU︸ ︷︷ ︸
Payload

+MP,EAP +MP,E1 +MP,E2︸ ︷︷ ︸
Propellant

. (5)

The trajectory of the spacecraft during this phase is defined by two parameters : ψ0, the shooting

azimuth and ωbasc, constant inclination speed. In this phase of the flight, no further control is

acting on the launcher, see [5] for more details. The values of the parameters ψ0 and ωbasc are

unknowns that must be determined in such a way to optimize the launcher’s consumption. The

boosters are ejected at a given time t0, once all the propellant is consumed. The set of possible

positions corresponding to a large sample of the parameters (ψ0, ωbasc) can be obtained by a

simple integration of the motion’s equations. Let us denote by X0 the set of all possible states

of the launcher at time t0 (the end of phase 0) for all values of parameters (ψ0, ωbasc) in a given

set PIni. Each point of X0 can be considered as image by a known application Ψ of shooting

parameters (ψ, ω):

x ∈ X0 ⇔ ∃p = (ψ, ω) ∈ PIni, x = Ψ(p).

The total mass of the launcher at time t0 (the end of phase 0) can be explicitly calculated:

m(t0) = M0 = ME1 +ME2 +mF︸ ︷︷ ︸
Structure

+ mCU︸ ︷︷ ︸
Payload

+MP,E1 − βE1t0 +MP,E2︸ ︷︷ ︸
Propellant

. (6)

Remark, that at the end of this phase the launcher is assumed to be out of the atmosphere. So,

for all the following phases the aerodynamic forces can be neglected.

Boost 1. This part of the mission starts from the set X0 and ends when the launcher has

reached the given injection region on the transfer orbit, GTO. Denote C the set of possible

injection states. The following hypothesis will be assumed
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Hypothesis 1 (Properties of the set C) The set C is a segment of a single GTO orbit

around of its perigee.

During the first boost, the engines of the first stage are on until the complete propellant

consumption of the first stage. The first stage is ejected at a known time t1. Then the engines

of the second stage are on, during the time interval [t1, t2]. The evolution of the launcher is

described by the following system of differential equations

F1 :


dx
dt = f1(t,x(t),m(t),u1(t)), t ∈]t0, t2[
dm
dt = β1(t)

x(t0) ∈ X0, m(t0) = M0, u1 ∈ Uad
(7)

where f1(t, x,m, u) is the function corresponding to the right hand side of the system of differ-

ential equations (2). The thrust force and propellant flux functions are defined as follows:

FT (t) =

{
βE1

g0Isp, t ∈ [t0, t1]
βE2g0Isp, t ∈ [t1, t2]

, β1(t) =

{
βE1

, t ∈ [t0, t1]
βE2 , t ∈ [t1, t2].

The end time t2 of the first boost is unknown and may be optimized. It can be bounded by

the known constant T2 = t1 +
MP,E2

βE2

corresponding to the maximal duration of the propellant

consumption for the engine of the second stage. So one has: t0 < t1 < t2 ≤ T2. Let us define

M1 = ME2︸︷︷︸
Structure

+ mCU︸ ︷︷ ︸
Payload

+ MP,E2︸ ︷︷ ︸
Propellant

(8)

the total mass of the launcher at the time t1, after ejection of the first stage. At the end time

t2 of the first boost, the following state constraint should be satisfied :

x(t2) ∈ C, m(t2) ≥ 0 (9)

where C is the injection coordinates subset of a given GTO orbit (satisfying (H1)).

The ballistic flight. Once the launcher has reached a GTO, the engine of the second floor is

off. Then follows a ballistic flight phase. The duration of this phase is not fixed and depends

on the GTO parameters. Denote t3 > t2 the end time of this phase. The trust force is zero

because all engines are off. Therefore, the launcher’s motion is governed by an uncontrolled and

autonomous differential system:

G :

{
dx
dt = g(x(t),m(t)) t ∈]t2, t3]
dm
dt = 0

(10)

where g(x,m) is the function corresponding to the right hand side of the system of differential

equations (2) with zero thrust force. Let us denote Φg(t, (x,m)) the associated flow map,

such that for each (x,m) the function Φg(·, (x,m) is solution of (10) with initial condition

Φg(t2, (x,m)) = (x,m).
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Boost 2. This phase can start when the launcher has reached a position near the apogee of

the GTO. The second engine is ignited to perform the orbital transfer to GEO. Once the GEO

reached at some unknown time tf > t3, the mission is completed. During this phase, the state

equations are controlled by the direction of the thrust force and are autonomous:

F2 :


dx
dt = f2(x(t),m(t),u2(t)), t ∈]t3, tf [
dm
dt = βE2 .

x(tf ) ∈ Cf , u2 ∈ Uad
(11)

where f2(x,m, u) is the function corresponding to the right hand side of the system of differential

equations (2) with constant thrust force: FT = βE2
g0Isp.

3 Optimal control problem

Let u = (u1,u2) ∈ Uad × Uad and x ∈ X0. An admissible trajectory corresponding to u and x

is the absolutely continuous function (x(·),m(·)) =
(
xu,t2,t3

(x,M0)(·),m
u,t2,t3
(x,M0)(·)

)
defined on [t0, tf [

such that

• ∃t1 < t2 < T2 such that (x(·),m(·)) is solution of (7) associated to the control u1(·) on

the time interval [t0, t2[ with initial condition x(t0) = x, m(t0) = M0;

• At time t2, the condition (9) is satisfied;

• ∃t3 > t2 such that (x(·),m(·)) is solution of (10) on the time interval [t2, t3[

• ∃tf > t3 such that (x(·),m(·)) is solution of (11) on the time interval [t3, tf [ associated to

the control u2(·) and satisfying the terminal condition x(tf ) ∈ Cf .

The optimal control problem aims to maximize the final propellant mass at the end of the

mission. 

Maximize mu,t2,t3
(x,M0)(tf )(

xu,t2,t3
(x,M0),m

u,t2,t3
(x,M0)

)
is an admissible solution

associated with (u, x, t2, t3)
u ∈ Uad × Uad, t1 < t2 < t3 < tf ,

x ∈ X0, xu,t2,t3
(x,M0)(t2) ∈ C, and xu,t2,t3

(x,M0)(tf ) ∈ Cf .

(P)

4 HJB approach

First, the optimal control problem (P) is characterized with two reachability problems and

a parameter optimization. As explained in the section (2.4) the optimization over the set of

shooting parameters is equivalent to the optimization over the set of initial states X0. The other

parameters of the problem are the durations τ2 = t2 − t1 and τ3 = t3 − t2 of the first boost and

of the ballistic flight respectively. It is assumed here that these parameters take their values in

some known intervals: τ2 ∈ Iτ2 =

[
0,
MP,E2

βE2

]
and τ3 ∈ Iτ3 =

[
τmin3 , τmin3

]
.
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4.1 Reachability problems

Let us associate with two controlled phases of the flight the following reachability problems.

Definition 4.1 Let (xu2

(x,m),m
u2

(x,m)) be a solution of (11) starting at (x,m) at time τ = 0 and

associated with an admissible control u2 ∈ Uad. The backward reachable set of duration τ for

the system (11) and the target Cf is the set:

RCfF2
(τ) =

{
(x,m)

∣∣∣ ∃u2 ∈ Uad s.t. xu2

(x,m)(τ) ∈ Cf ,

and mu2

(x,m)(τ) ≥ 0
}
. (12)

Set D := Φ(Iτ3 , C× [0,M0]). By definition of the dynamical system (10), the hypothesis (H1)

implies that the set D is a segment of the same orbit. So, one can notice that

∀x ∈ C, ∀(y,m) ∈ D, ∃τ3 ∈ Iτ3 s.t. (y,m) = Φ(τ3, (x,m)).

On another hand, since the dynamics F2 is autonomous, the backward reachable set RCfF2
(τ)

does not depend on the initial time but only on the duration. Then one can define also the

minimal duration function to reach the target.

Definition 4.2 The minimal duration function associated with the backward reachability prob-

lem 4.1 is the application:

TF2
(x,m) = inf

{
τ ∈ [0, τmaxf ]

∣∣∣ (x,m) ∈ RCfF2
(τ)
}
. (13)

Definition 4.3 Let (xu1

(x,m),m
u1

(x,m)) be a solution of (7) starting at (x,m) at time t = t0 and

associated with an admissible control u1 ∈ Uad. The backward reachable set at time t2 for the

system F1 defined by (7) and the target C the set:

RCF1
(t2) =

{
(x,m)

∣∣∣ ∃u1 ∈ Uad s. t. xu1

(x,m)(t2) ∈ C,

and mu1

(x,m)(t2) ≥ 0
}

(14)

From the above definitions it is clear that the following result holds.

Theorem 4.1 Consider an initial position x ∈ X0 and fix (τ2, τ3) ∈ Iτ2 × Iτ3 . Set t2 = t1 + τ2

and t3 = t2 + τ3. Then for a given control u ∈ Uad there exists an admissible trajectory

(x,m) =
(
xu,t2,t3

(x,M0),m
u,t2,t3
(x,M0)

)
if and only if

(i) (x,M0) ∈ RCF1
(t2)

(ii) ∃tf
∣∣∣ Φg ( τ3, (x(t2),m(t2)) ) ∈ RCfF2

(tf − t3). (15)

Then, for any admissible trajectory one can write explicitly the corresponding final mass mu,t2,t3
(x,M0)(tf ):

mu,t2,t3
(x,M0)(tf ) = mu,t2,t3

(x,M0)(t2)− βE2
(tf − t3)

= M1 − βE2
(t2 − t1)− βE2

(tf − t3) (16)
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Due to the hypothesis (1) the terminal time tf in (15) does not depend on x(t2) but only on

mu,t2,t3
(x,M0)(t2).

4.2 Solution algorithm

To solve the problem (P) the sets of parameters are discretized taking uniform grids. Let

P∆
Ini = {(ψi, ωj), i, j = 1, . . . , NI} be a subset ofNI×NI values in PIni andX∆

0 the corresponding

finite subset of initial positions ( see [5] for more details about the computation procedure). Let

Ξ∆ = {(τ i2, τ
j
3 ), i, j = 1, . . . , Nτ} be a discrete subset of Iτ2 × Iτ3 . It is assumed that, when

the discretization mesh step ∆ tends to 0, the sets X∆
0 and Ξ∆ tend respectively to X0 and

Iτ2 × Iτ3 , in the sense of convergence of sets. Let C∆ be the discrete approximation of the set

C of injection states on the GTO and D∆, the set of images of C∆ by the flow map Φg. The

algorithm for solving the optimal control problem (P) is the following:

Step 1- Solve the minimum time optimal control problem for the system F2 and compute the

minimum time function (13).

Step 2- For any (τ2, τ3) ∈ Ξ∆ solve the reachability problem (14) with t2 = t1 + τ2.

Step 3-For every x ∈ X∆
0 such that (x,M0) ∈ RCF1

(t2) compute the corresponding trajectory(
xu1

(x,M0),m
u1

(x,M0)

)
solution of (7) such that

(
xu1

(x,M0),m
u1

(x,M0)

)
(t2) ∈ C and compute, by direct

minimization

M2(x, t2) = βE2
min

(y,m(t2))∈D∆
βE2
TF2

(y,m(t2))

Step 4 Compute by direct maximization over the set of parameters (x, τ2) the optimal final

mass

sup
x∈X0,τ2∈Iτ2

[M1 − βE2
(t2 − t1)−M2(x, t2)]

4.3 HJB approach to solve reachability problems

4.3.1 Characterization of the reachable set RCF1
(t2).

This problem can be solved with the approach developed in [6] for the reachability problems

with non-autonomous dynamical systems. Indeed, when the time horizon t2 is known, one can

easily rewrite the system F1 under the following form

F̃1 :


dx
dt = f̃1(t2 − t,x(t),m(t),u1(t)), t ∈]t0, t2[
dm
dt = β̃1(t2 − t)

x(t0) ∈ X0, m(t0) = M0, u1 ∈ Uad.

Let ϕ be a Lipschitz continuous function that characterize the target set C as follows: x ∈ C ⇔
ϕ(x) ≤ 0. Typically, one can use the signed distance function. Then, following [6], one can

define the value function

v1(x,m, t2) = inf
u1

ϕ(xu1

(x,m)(t2)) ∨ (−mu1

(x,m)(t2)) (17)
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where a ∨ b = max{a, b}. It is shown in [6] that this value function is a unique Lipschitz

continuous solution of

∂v1

∂t
+H1(t, x,m,D(x,m)v1(x,m, t)) = 0

v1(x,m, 0) = ϕ(x) ∨ (−m) (18)

with H1(t, x,m, p) = max
u1∈U

−p · F̃1(t, x,m, u) and that this function characterize the reachable

set RCF1
(t2) as follows: (x,m) ∈ RF1

(C, t2) ⇔ v1(x,m, t2) ≤ 0.

4.3.2 Characterization of the minimal time function TF2
(x,m).

here again the approach introduced in [8] will be used. The system F2 is autonomous. Let ψ be a

Lipschitz continuous function that characterize the target set Cf as follows: x ∈ Cf ⇔ ψ(x) ≤ 0.

Then, following [8], one can define the value function

v2(x,m, τ) = inf
u2

ψ(xu2

(x,m)(τ)) ∨ (−mu2

(x,m)(τ)). (19)

According to [8], v2(x,m, τ) is a unique Lipschitz continuous solution of

∂v2

∂τ
+H2(x,m,D(x,m)v2(x,m, τ)) = 0

v2(x,m, 0) = ψ(x) ∨ (−m) (20)

with H2(x,m, p) = max
u∈U
−p ·F2(x,m, u). This function characterizes the minimum time function

as follows : TF2
(x,m) = min{τ > 0

∣∣∣ v2(x,m, τ) ≤ 0}.

5 Numerical results

This section presents some numerical results obtained using ROCHJ (see [7]) software for solving

HJB equations. The data used for the simulations was provided by CNES together with an

example of optimal trajectory calculated by CNES using Shooting methods. The considered

launcher is an Ariane-type two-stage spacecraft. The numerical data used in all the computations

are the same as in [5].

After the computation of the value functions v1 and v2 (by solving a HJB equation for each

one), an optimal trajectory for a given initial condition (x,M0) is computed by following the

proposed solution algorithm as follows:

Step 1. Compute a trajectory (xu1

(x,M0),m
u1

(x,M0)) that reaches the target GTO set C at time t2,

using the value function v1. (See [5] for more details about reconstruction algorithm).

Step 2. Integrate the motion equations for the ballistic flight (10 ) starting from (xu1

(x,M0)(t2),mu1

(x,M0)(t2))

until a given time t3 > t2.
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Figure 1: Balistic flight prolongations of the first boost trajectories for different grids

Step 3. Reconstruct, using the minimum time function (13), the time-optimal trajectory

(xu2

(x,m(t2)),m
u2

(x,m(t2))).

Note first that the approach presented in this paper is a global approach that provides the

optimal trajectory (with the best performance). This is an advantage compared to other numer-

ical approaches based on classical optimization algorithms which provide generally only local

solutions. The approach doesn’t require any particular initialization of the computation, unlike

the approaches based on shooting algorithms which require a good initial guess to guarantee the

convergence of the computational process.

The quality of our approach depends on the computation grids used to solve the HJB equa-

tions. In Fig. 2, one can see that the approximated trajectories are quite similar during Phase 0

and Boost 1. They are all close to the reference solution, and the error approximations decrease

as the size of the grids increase. The following grids were tested: grid 1: 20×8×20×20×16×5,

grid 2: 30×12×30×30×24×5, grid 3: 40×16×40×40×32×5 , and grid 4: 50×20×50×50×40×5.

The Fig. 1 shows the trajectories obtained by integration of the ballistic flight equations (10)

from the end points of the first boost trajectories obtained from different computational grids.

One can notice that only the more finest computational grid allows to obtain a good approx-

imation of the target GTO such that the ballistic flight phase reaches a segment of GEO and

allows to perform a good transfer maneuver.

It should be pointed out that the cost of computation depends also on the grid used for solving

the HJB equations. The presented results were obtained using a computer with Intel XEON

E5-2695 (24 Cores) processor and a multi-threaded ROC-HJ Sofware. The whole numerical

simulations on a grid 1 take about 450 seconds, while on a more finest grid 4, the computation

takes 6 hours.
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Figure 2: Optimal trajectories with different grids in spherical coordinates: atmospheric flight
and boost 1

To compute the global optimal trajectory one needs to solve the corresponding HJB equations

(18) and (20) on a sufficiently fine grids. The Fig. 3 shows the obtained optimal two-boost

trajectory, starting on the Earth and arriving on the GEO with a small propellant mass gain:

m(tf ) = 200kg.

6 Conclusion

The paper introduces a new mathematical formulation of the launching problem that leads to a

global optimization procedure based on Hamilton-Jacobi-Bellman approach. Recent theoretical

and numerical development in HJB approach allow to tackle this trajectory optimization prob-

lem including complex flight phases with two boosts and a ballistic flight. Other optimization

procedures have already been extensively studied and used in aerospace literature, and their

features are very well known (precision, convergence, ...). However these approaches provide

(in general) local optima and their convergence are very sensitive to the initialization of the

optimization algorithms. The Hamilton-Jacobi approach turns out to be quite effective and

provides a global solution. Even though, it should be noticed that the HJB approach requires a

CPU time that increases as the size of the grid increase.
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