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Numerical Simulation of Volcanic Jets

Marica Pelanti and Randall J. LeVeque

Abstract. We numerically model the dynamics of explosive vol-
canic eruptions to study the fluid-dynamic structure of jets that
develop in such processes. The eruptive mixture is described as
a two-phase flow made of gas and solid particles. The hyperbolic
portion of these equations consists of the compressible Euler equa-
tions for the gas phase and the non-strictly hyperbolic conservation
laws for a pressureless dust, used to model the solid phase. These
equations are coupled together through terms modeling inter-phase
drag and heat transfer. Gravity is also taken into account for both
phases. Ejection velocities in eruptions are often large enough that
the jet is supersonic relative to the mixture sound speed, leading
to the development of internal shock wave structures. We solve the
system of equations by employing a high-resolution finite volume
method based on wave propagation algorithms.

1. Introduction

Explosive volcanic events are characterized by the injection into the atmosphere
of a mixture of gas and pyroclastic material at high velocity and temperature.
Extensive work has been made since the mid-1980s on the numerical modeling of
such phenomena, e.g. [2, 10, 11, 19, 20], which has shown how numerical simulation
is an important tool for better understanding the complex and highly nonlinear
thermo-fluid dynamic mechanisms governing these processes.

Here our aim is to numerically model the dynamics of explosive volcanic eruptions
by employing a finite volume method based on the wave propagation algorithms
described in [5]. In particular, we are interested in studying the fluid dynamic
structure of the jet thrust region that characterizes overpressured supersonic erup-
tive flows. Gases containing particulate material can have very low sound speed,
so that volcanic jets are often supersonic, and may develop complex shock wave
patterns [4] above the conduit exit.

In Section 2 we illustrate the physical model that we employ to describe the erup-
tive mixture, while the numerical method used is presented in Section 3. Results
of our computations are reported in Section 4.
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2. Physical Model

Our physical model follows existing work on the computation of two-phase flows
[3, 17, 18] and the simulation of volcanic processes [2, 10, 11, 19]. The eruptive
mixture is modeled as a two-phase flow composed of solid particles (dust) sus-
pended in a gaseous phase. Each phase is considered as a continuum described by
macroscopic quantities, with the gas phase being compressible, and the solid phase
incompressible at a microscopic level (microscopic density ρd = constant). More-
over, we assume that the dust phase is dilute (dust volume fraction ϑd � 1), and
has negligible inter-particle interaction, so that it will be considered pressureless.
The governing equations consist of the compressible Euler equations for the gas
coupled with conservation laws for the dust phase through terms modeling inter-
phase drag and heat transfer. Gravity is also take into account for both phases.
We neglect other physical effects such as gas viscosity, turbulence, and water vapor
content. This is a reasonable assumptions in the specific small-time scale explosive
volcanic processes we are interested in.

In the following, subscripts g and d refer to the gas and dust phase, respectively,
and part of the nomenclature used is summarized in Table 1. The equations ex-
pressing the conservation of mass, momentum and total energy for the two phases
are:

∂ρ

∂t
+ ∇ · (ρVg) = 0 ,(1a)

∂

∂t
(ρVg) + ∇ · (ρVg ⊗ Vg + pI) = ρg −D(Vg − Vd) ,(1b)

∂E

∂t
+ ∇ · ((E + p)Vg) = ρVg · g −D(Vg − Vd) · Vd −Q(Tg − Td) ,(1c)

∂β

∂t
+ ∇ · (βVd) = 0 ,(1d)

∂

∂t
(βVd) + ∇ · (βVd ⊗ Vd) = βg +D(Vg − Vd) ,(1e)

∂Ω

∂t
+ ∇ · (ΩVd) = βVd · g +D(Vg − Vd) · Vd + Q(Tg − Td) .(1f)

The gaseous phase is assumed to follow the ideal polytropic gas thermodynamic
relations pg = (γ − 1)ρgεg and εg = cvgTg, γ, cvg = constant. The energy equation
for the dust phase is εd = cvdTd, cvd = constant. The drag function has the form

(2) D =
3

4
Cd

βρ

ρdd
|Vg − Vd| ,

where d is the dust particle diameter, and Cd the drag coefficient, which we take
as [10, 11]

(3) Cd =

{

24
Re

(

1 + 0.15Re0.687
)

if Re < 1000 ,

0.44 if Re ≥ 1000 .
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Above Re = ρ d|Vg − Vd|/µ is the Reynolds number, with µ denoting the dynamic
viscosity of the gas. The heat transfer function is given by

(4) Q =
Nu 6κgβ

ρdd2
,

where Nu is the Nusselt number, which we express as Nu = 2 + 0.65Re1/2Pr1/3.
Here Pr = cpgµ/κg is the Prandtl number, κg denotes the gas thermal conductivity,
and cpg the gas specific heat at constant pressure.

ϑg, ϑd = volume fractions, ϑg + ϑd = 1, ϑd � 1;
ρg, ρd = material microscopic mass densities (ρd = constant);
ρ = ϑgρg = gas macroscopic density;
β = ϑdρd = dust macroscopic density (concentration);
pg = gas pressure, p = ϑgpg;
Vg = (ug, vg , wg)

T, Vd = (ud, vd, wd)
T = vectorial velocities;

εg, εd = specific internal energies;
eg = εg + 1

2
|Vg |

2, ed = εd + 1
2
|Vd|

2 = specific total energies;
E = ϑgρgeg, Ω = ϑdρded = total energies per unit volume;
Tg, Td = temperatures;
cpg, cvg ; cvd = specific heats (γ = cpg/cvg);
g = (0, 0,−g)T = gravity acceleration (z direction).

Table 1. Nomenclature.

3. Numerical Method

We solve the system (1) by employing a fractional step technique, in which we
alternate between a time step on the homogeneous hyperbolic system and a time
step on a system of ODEs for the source terms, with the exception of the gas
gravity term, which is incorporated in the left hand side of the equations. To solve
the homogeneous hyperbolic portion of the system we use the wave propagation
algorithms [5] as implemented in the clawpack software [6]. These are a high-
resolution finite volume methods based on solving Riemann problems at each cell
interface at every time step. In particular, we adopt the f-wave formulation [1]
of the algorithm, in which the flux difference f(QR) − f(QL) between neighboring
cells with data QR and QL is decomposed into waves (f-waves) that are then used
to update the cell averages. Second-order correction terms and limiters are applied
to these f-waves.

Notice that coupling between the two phases takes place only through drag and
heat transfer terms, so that the hyperbolic homogeneous equations decouple into
two separate systems for the gas and dust phase. Therefore, we can solve the two
sets of equations separately.
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The gas phase equations are the standard Euler equations of gas dynamics for an
ideal gas, and for their numerical approximation we employ the Roe linearization
[16]. In particular, following the method presented in [8], we incorporate the effect
of the gas gravity source term into the Riemann solution, so that we decompose in
f-waves the sum of the gas flux difference and the contribution of the source term as
fg(Q

R

g ) − fg(Q
L

g)− Ψ =
∑

p Z
p, where each f-wave Zp is taken as a scalar multiple

of the pth Roe eigenvector r̂p, and has speed given by the pth Roe eigenvalue

λ̂p. The gravity contribution Ψ arising from the gas gravity term ψg is defined as
Ψ = ∆z(ψL

g+ψR

g )/2, where∆z = zR−zL is the difference in the vertical coordinate of
the centroids of the two cells adjacent to this interface. This formulation for gravity
allows the accurate modeling of small perturbations from gravitational steady state,
which is important in the applications considered here, where dusty gas jets enter
an atmosphere in hydrostatic balance conditions.

The non-strictly hyperbolic equations of the pressureless dust phase are solved by
employing the algorithm presented in [7]. With the f-wave formulation we generally
use only a single wave with magnitude Z = fd(Q

R

d)− fd(Q
L

d) and speed ûd defined
as the usual Roe average for the dust velocity, based on the dust density. This can
also be shown to be the correct delta-shock propagation speed in the pressureless
equations [7]. The only time we use two waves is if uL

d < 0 < uR

d , in which case they
are spreading with a vacuum state in between. Then we take Z1 = −fd(Q

L

d) and
Z2 = fd(Q

R

d), with speeds s1 = uL

d and s2 = uR

d , respectively.
The dust gravity source term, together with terms for inter-phase drag and

heat exchange, is handled with a fractional step procedure, as already mentioned.
A semi-analytical approach is used to treat drag and heat transfer, in which we
exploit the structure of the exact solution of the systems of ODEs arising from these
two contributions considered separately. This technique is efficient in modeling
mechanical and thermal exchange for a wide range of relaxation time scales.

For a detailed description of the numerical method employed to solve the equa-
tions of the physical model (1), we refer to [9, 15].

4. Numerical Simulations

We consider the injection of a hot supersonic particle-laden gas from a volcanic
vent into a cooler atmosphere (e.g. [2, 10, 12, 19]). Initially, a standard atmosphere
vertically stratified in pressure and temperature is set all over the domain. At
the vent, the gas pressure, the velocities and temperatures of the two phases, and
the dust volumetric fraction are assumed to be fixed and constant. The ground
boundary is modeled as a free-slip reflector. For two-dimensional experiments,
an axisymmetric configuration of the flow is used, and system (1) is rewritten in
cylindrical coordinates. We obtain a new set of equations with the same form of
(1) on the left-hand side, but with an additional geometric source term on the
right-hand side, which is treated numerically with an operator splitting technique.
In this two-dimensional axisymmetric configuration, half of the volcanic vent, of
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diameter Dv, is located in the lower left-hand corner of the computational domain,
the symmetry axis is modeled as a free-slip reflector, while the upper and right-hand
edges of the domain are free flow boundaries and all the variables gradients are set
to zero. For three-dimensional experiments we have performed our simulations in
an octant, see [15].

Computations are performed by using the basic Fortran 77 routines of the soft-
ware clawpack [6]. The adaptive mesh refinement version (amrclaw) is also
being used for further experiments [15].

Several numerical experiments have been performed by using the model pre-
sented in Sections 2 and 3. A set of simulations has been focused on pyroclastic
dispersion dynamics processes of pressure-balanced eruptions, following in partic-
ular the work in [10]. We refer to [15] for an illustration of the results obtained,
which showed qualitative agreement with the cited work above.

Here we report selected results of another set of numerical experiments in which
we have studied the decompression phase of underexpanded supersonic jets with
different crater morphology, focusing on shock wave patterns that may develop
in the jet thrust region. This is also part of a joint work with A. Neri and T.
Esposti Ongaro (who made preliminary studies on the subject [13]), with the aim
of comparing results obtained with our approach with those computed by using the
numerical model of their Pyroclastic Dispersion Analysis Code (PDAC) [11].

Vent conditions are taken from [12, 14], and are summarized below, together
with some physical parameters for the particulate phase

vg,v [m/s] vd,v [m/s] pg,v [MPa] Tv [K] ϑd,v d [µm] ρd [kg/m3]
211.0 201.0 4.6 1100 0.063 200 2360

The gas phase is considered dry air, and it has R = 287 J/(kg K) (gas constant),
γ = 1.4, µ = 10−5 Pa s, and κg = 0.05 W/(m K). Moreover, for the dust cvd =
1.3 × 103 J/(kg K). The volcanic crater is modeled as a wedge with inner radius
Dv/2, Dv = 127 m, and outer radius R = 254 m. We will present results for two
different crater opening angle (with respect to the vertical): α = 90◦ (no crater,
free decompression) and α = 30◦.

Figures 1 and 2 show contour plots of the dust density at different times as
obtained for α = 90◦ and α = 30◦, respectively, on an uniform grid of 300 × 600
cells with cell size = 12.7 m. Common features to the two simulations are the rapid
growth of the jet diameter above the vent and the unsteady vortical structure that
characterizes the jet head, and which is caused by the initial rapid acceleration of
the fluid.

In Figures 3 and 4 we display the pressure gradient for the two cases at t = 4 and
30 s. From these figures we can observe both atmospheric shocks waves propagating
radially from the vent, and the development of shock patterns inside the jets. In the
case α = 30◦ regular reflection occurs, while for α = 90◦ and a Mach disk is formed.
The relevant fluid dynamic features in the latter case are the rarefactions at the
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orifice, the so-called barrel shocks, the Mach disk shock, and the shocks radiating
outward from the Mach disk triple point.

Additional results with different vent conditions and crater geometry, together
with results with adaptive mesh refinement and in three-dimensions can be found
in [15].
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Figure 1. α = 90◦. Dust density contours at t = 4, 10, 20, 30 s.

Figure 2. α = 30◦. Dust density contours at t = 4, 10, 20, 30 s.
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Figure 3. α = 90◦. Pressure gradient at t = 4, 30 s.

Figure 4. α = 30◦. Pressure gradient at t = 4, 30 s.
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