V. Barbu, M. Röckner, and F. Russo, s, x 0 , t, x) ? p(s, x 0 , t, x) such that for all (s, x 0 , t) ? [0, Probabilistic representation for solutions of an irregular porous media type equation: the irregular degenerate case, pp.1-43, 2011.

N. Belaribi, F. Cuvelier, and F. Russo, Probabilistic and deterministic algorithms for space multidimensional irregular porous media equation, Stochastic Partial Differential Equations: Analysis and Computations, vol.53, issue.1, pp.3-62, 2013.
DOI : 10.1007/BFb0085169

URL : https://hal.archives-ouvertes.fr/hal-00723821

S. Benachour, P. Chassaing, B. Roynette, and P. Vallois, Processus associés à l'équation des milieux poreux, Ann. Scuola Norm. Sup. Pisa Cl. Sci, vol.23, issue.44, pp.793-832, 1996.

D. P. Bertsekas and S. E. Shreve, Stochastic optimal control The discrete time case, Mathematics in Science and Engineering, vol.139, 1978.

P. Blanchard, M. Röckner, and F. Russo, Probabilistic representation for solutions of an irregular porous media type equation, The Annals of Probability, vol.38, issue.5, pp.1870-1900, 2010.
DOI : 10.1214/10-AOP526

URL : https://hal.archives-ouvertes.fr/hal-00279975

V. I. Bogachev, N. V. Krylov, M. Röckner, and S. V. Shaposhnikov, Fokker-Planck-Kolmogorov equations, Mathematical Surveys and Monographs, vol.207, 2015.
DOI : 10.1090/surv/207

M. Bossy, L. Fezoui, and S. Piperno, COMPARISON OF A STOCHASTIC PARTICLE METHOD AND A FINITE VOLUME DETERMINISTIC METHOD APPLIED TO BURGERS EQUATION, Monte Carlo Methods and Applications, vol.3, issue.2, pp.113-140, 1997.
DOI : 10.1515/mcma.1997.3.2.113

URL : https://hal.archives-ouvertes.fr/hal-00607773

M. Bossy and D. Talay, Convergence rate for the approximation of the limit law of weakly interacting particles: application to the Burgers equation, The Annals of Applied Probability, vol.6, issue.3, pp.818-861, 1996.
DOI : 10.1214/aoap/1034968229

URL : https://hal.archives-ouvertes.fr/inria-00074265

P. Cheridito, H. M. Soner, N. Touzi, and N. Victoir, Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs, Communications on Pure and Applied Mathematics, vol.1627, issue.7, pp.1081-1110, 2007.
DOI : 10.1080/17442509208833749

URL : http://arxiv.org/abs/math/0509295

A. Friedman, Stochastic Differential Equations and Applications, Probability and Mathematical Statistics, vol.1, issue.28, 1975.
DOI : 10.1007/978-3-642-11079-5_2

P. Henry-labordère, Counterparty risk valuation: A marked branching diffusion approach Available at SSRN: http://ssrn, 2012.

P. Henry-labordère, N. Oudjane, X. Tan, N. Touzi, and X. Warin, Branching diffusion representation of semilinear pdes and Monte Carlo approximations, 2016.

P. Henry-labordère, X. Tan, and N. Touzi, A numerical algorithm for a class of BSDEs via the branching process. Stochastic Process, Appl, vol.124, issue.2, pp.1112-1140, 2014.

L. Holmström and J. Klemelä, Asymptotic bounds for the expected L1 error of a multivariate kernel density estimator, Journal of Multivariate Analysis, vol.42, issue.2, pp.245-266, 1992.
DOI : 10.1016/0047-259X(92)90046-I

B. Jourdain and S. Méléard, Propagation of chaos and fluctuations for a moderate model with smooth initial data, Annales de l'Institut Henri Poincare (B) Probability and Statistics, vol.34, issue.6, pp.727-766, 1998.
DOI : 10.1016/S0246-0203(99)80002-8

M. Kac, Probability and related topics in physical sciences, volume 1957 of With special lectures by

L. Cavil, N. Oudjane, and F. Russo, Particle system algorithm and chaos propagation related to a non-conservative McKean type stochastic differential equations. Stochastics and Partial Differential Equations: Analysis and Computation, pp.1-37, 2016.

A. L. Cavil, N. Oudjane, and F. Russo, Probabilistic representation of a class of non-conservative nonlinear partial differential equations, ALEA Lat. Am. J. Probab. Math. Stat, vol.13, issue.2, pp.1189-1233, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01241701

H. P. Jr and . Mckean, Propagation of chaos for a class of non-linear parabolic equations, Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, pp.41-57, 1967.

. Méléard, Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models, Probabilistic models for nonlinear partial differential equations (Montecatini Terme, pp.42-95, 1995.
DOI : 10.1007/978-3-642-96439-8

S. Méléard and S. Roelly-coppoletta, A propagation of chaos result for a system of particles with moderate interaction, Stochastic Processes and their Applications, vol.26, issue.2, pp.317-332, 1987.
DOI : 10.1016/0304-4149(87)90184-0

E. Pardoux, Backward Stochastic Differential Equations and Viscosity Solutions of Systems of Semilinear Parabolic and Elliptic PDEs of Second Order, Stochastic analysis and related topics, pp.79-127, 1996.
DOI : 10.1007/978-1-4612-2022-0_2

É. Pardoux and S. G. Peng, Adapted solution of a backward stochastic differential equation, Systems & Control Letters, vol.14, issue.1, pp.55-61, 1990.
DOI : 10.1016/0167-6911(90)90082-6

E. Pardoux and A. Ra¸scanura¸scanu, Stochastic differential equations, Backward SDEs, Partial differential equations, 2014.
DOI : 10.1007/978-3-319-05714-9

URL : https://hal.archives-ouvertes.fr/hal-01108223

D. W. Stroock and S. R. Varadhan, Multidimensional diffusion processes, Classics in Mathematics
DOI : 10.1007/3-540-28999-2

A. Sznitman, Topics in propagation of chaos, École d'Été de Probabilités de Saint-Flour XIX?1989, pp.165-251, 1991.
DOI : 10.1070/SM1974v022n01ABEH001689