On measures in sub-Riemannian geometry

Abstract : In \cite{gjha} we give a detailed analysis of spherical Hausdorff measures on sub-Riemannian manifolds in a general framework, that is, without the assumption of equiregularity. The present paper is devised as a complement of this analysis, with both new results and open questions. The first aim is to extend the study to other kinds of intrinsic measures on sub-Riemannian manifolds, namely Popp's measure and general (i.e., non spherical) Hausdorff measures. The second is to explore some consequences of \cite{gjha} on metric measure spaces based on sub-Riemannian manifolds.
Liste complète des métadonnées


https://hal-ensta.archives-ouvertes.fr/hal-01452778
Contributeur : Frédéric Jean <>
Soumis le : lundi 6 mars 2017 - 14:25:39
Dernière modification le : mardi 14 mars 2017 - 11:55:06

Fichier

mesures_grenoble_revised.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01452778, version 3
  • ARXIV : 1702.00241

Citation

R Ghezzi, Frédéric Jean. On measures in sub-Riemannian geometry. 2017. <hal-01452778v3>

Partager

Métriques

Consultations de
la notice

88

Téléchargements du document

25