Generation of Attosecond Light Pulses from Gas and Solid State Media

Abstract : Real-time observation of ultrafast dynamics in the microcosm is a fundamental approach for understanding the internal evolution of physical, chemical and biological systems. Tools for tracing such dynamics are flashes of light with duration comparable to or shorter than the characteristic evolution times of the system under investigation. While femtosecond (fs) pulses are successfully used to investigate vibrational dynamics in molecular systems, real time observation of electron motion in all states of matter requires temporal resolution in the attosecond (1 attosecond (asec) = 10(-18) s) time scale. During the last decades, continuous efforts in ultra-short pulse engineering led to the development of table-top sources which can produce asec pulses. These pulses have been synthesized by using broadband coherent radiation in the extreme ultraviolet (XUV) spectral region generated by the interaction of matter with intense fs pulses. Here, we will review asec pulses generated by the interaction of gas phase media and solid surfaces with intense fs IR laser fields. After a brief overview of the fundamental process underlying the XUV emission form these media, we will review the current technology, specifications and the ongoing developments of such asec sources.
Liste complète des métadonnées

https://hal-ensta.archives-ouvertes.fr/hal-01533395
Contributeur : Pierre Zaparucha <>
Soumis le : mardi 6 juin 2017 - 14:03:42
Dernière modification le : jeudi 11 janvier 2018 - 06:18:24

Lien texte intégral

Identifiants

Citation

Stefan Chatziathanasiou, Subhendu Kahaly, Emmanouil Skantzakis, Giuseppe Sansone, Rodrigo Lopez-Martens, et al.. Generation of Attosecond Light Pulses from Gas and Solid State Media. Photonics, MDPI, 2017, 4 (2), 〈10.3390/photonics4020026〉. 〈hal-01533395〉

Partager

Métriques

Consultations de la notice

142