Spectral analysis of polygonal cavities containing a negative-index material
Christophe Hazard, Sandrine Paolantoni

To cite this version:
Christophe Hazard, Sandrine Paolantoni. Spectral analysis of polygonal cavities containing a negative-index material. 2017. <hal-01626868>

HAL Id: hal-01626868
https://hal-ensta.archives-ouvertes.fr/hal-01626868
Submitted on 31 Oct 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Spectral analysis of polygonal cavities containing a negative-index material

Christophe Hazard* and Sandrine Paolantoni*

October 31, 2017

Abstract

The purpose of this paper is to investigate the spectral effects of an interface between vacuum and a negative-index material (NIM), that is, a dispersive material whose electric permittivity and magnetic permeability become negative in some frequency range. We consider here an elementary situation, namely, 1) the simplest existing model of NIM: the non dissipative Drude model, for which negativity occurs at low frequencies; 2) a two-dimensional scalar model derived from the complete Maxwell’s equations; 3) the case of a simple bounded cavity: a polygonal domain partially filled with a portion of Drude material. Because of the frequency dispersion (the permittivity and permeability depend on the frequency), the spectral analysis of such a cavity is unusual since it yields a nonlinear eigenvalue problem. Thanks to the use of an additional unknown, we linearize the problem and we present a complete description of the spectrum. We show in particular that the interface between the NIM and vacuum is responsible for various resonance phenomena related to various components of an essential spectrum.

1 Introduction

An electromagnetic negative-index material (NIM), often also called left-handed material, is a material whose microscopic structure leads to an unusual macroscopic behavior: in some frequency range(s), both macroscopic electric permittivity and magnetic permeability (or at least their real parts) become negative. Such materials were first introduced theoretically in the late sixties by Veselago [27] who exhibited the concept of negative refraction. The potentialities of NIMs for practical applications were investigated about 30 years later, mainly after the famous paper by Pendry [23] who opened the quest for spectacular devices such as the perfect flat lens or the invisibility cloak. Since then, these extraordinary materials have generated a great effervescence among the communities of physicists and mathematicians. Surprisingly very little has been achieved in the spectral analysis of systems involving a NIM. The present paper intends to bring a contribution in this framework. Its purpose is to show on a simple example that the presence of an interface between a NIM and a usual material is responsible for an essential spectrum.

One inherent difficulty of the spectral analysis of NIMs follows from an intrinsic physical property of such materials: frequency dispersion. Indeed, an electromagnetic NIM is necessarily a dispersive material in the sense that in the frequency domain, its permittivity and permeability (thus also the wave velocity) depend on the frequency. As a consequence, contrarily to the case of a usual dielectric medium, the time-harmonic Maxwell’s equations depend non-linearly on the frequency. Hence, when looking for the spectrum of an electromagnetic device involving a NIM, one has to solve a non-linear eigenvalue problem. This issue is very rarely mentioned in the mathematical literature. Indeed, most existing works concern the behavior of NIMs in the frequency domain, that is, propagation of time-harmonic waves at a given frequency. Our study relies on these works, which enlighten the fundamental role played by the contrasts,
that is, the respective ratios of permittivity and permeability across the interface. The first study in this context is due to Costabel and Stephan [14] in the mid-eighties. They considered a scalar transmission problem (which involves only one contrast) and showed by an integral equation technique that in the case of a smooth interface, the transmission problem is well-posed if and only if the contrast is different from the critical value -1. The detailed study of this critical value of the contrast is achieved in [22] and more recently in [11], both for smooth interfaces. The case of a two-dimensional non-smooth interface was tackled about fifteen years after the pioneering work of Costabel and Stephan: it was understood in [8] that in the presence of a corner, this critical value becomes a critical interval (which contains -1) depending on the angle of the corner. About another fifteen years later, the elegant T-coercivity technique gave a new light on these critical sets for two- and three-dimensional scalar transmission problems [5, 21], as well as Maxwell’s equations [6, 7]. An alternative point of view, based on the so-called Neumann–Poincaré operator, has received recently a resurgence of interest [1, 2, 3, 9, 24]: it provides another way to investigate these critical sets. From a physical point of view, the critical sets of the contrast are related to remarkable physical phenomena. On the one hand, the critical value -1 associated to a smooth interface ensures the existence of surface waves (localized near the interface) called surface plasmons [17, 19]. On the other hand, the critical interval associated with a corner on the interface gives rise to a possible concentration of energy near the vertex, which has been interpreted as a “black hole” effect at the corner [4].

Our aim is to investigate the spectral consequences of these critical sets. As mentioned above, frequency dispersion leads us to a non-linear eigenvalue problem. Fortunately, there is a skilful mean to get rid of this non-linearity. Indeed, thanks to the introduction of suitable auxiliary fields, one is able to rewrite this non-linear eigenvalue problem as an equivalent linear self-adjoint one which involves both electromagnetic and auxiliary fields. This augmented formulation technique was introduced by Tip [25] for Maxwell’s equations in dissipative and dispersive linear media, starting from fundamental assumptions: causality (causes precede effects) and passivity (nothing comes from nothing). It applies actually in a very wide frame of systems which observe these assumptions [16]. It is used in [12] to achieve a complete spectral analysis of Maxwell’s equations in the case of a plane interface between a NIM and vacuum. It is also developed in [10] to perform the numerical calculation of modes for cavities or photonic crystals containing a dissipative NIM.

In the present paper, we show how to apply and take advantage of this augmented formulation technique in an elementary situation. Firstly, instead of the three-dimensional Maxwell’s equations, we deal with a two-dimensional scalar equation (which can be derived from Maxwell’s equations in a medium which is invariant in one space direction). Secondly, we choose the simplest existing model of NIM, namely the non dissipative Drude model, for which negativity occurs at low frequencies. Finally, we consider the case of a bounded cavity consisting of two polygonal parts: one part filled with a Drude material and the complementary part filled with vacuum. We will see that contrarily to a cavity filled with a usual dielectric (for which the spectrum is always purely discrete: it is made of a sequence of positive eigenvalues which tends to $+\infty$), the presence of the Drude material gives rise to various components of an essential spectrum corresponding to various unusual resonance phenomena:

(i) A low frequency bulk resonance: the zero frequency is an accumulation point of positive eigenvalues whose associated eigenvectors are confined in the Drude material.

(ii) A surface resonance: for the particular frequency which corresponds to the critical value -1 of the contrast, localized highly oscillating vibrations are possible near any “regular point” of the interface between the Drude material and the vacuum (by “regular point”, we mean a point which is not a vertex of a corner).

(iii) A corner resonance: for any frequency in the frequency intervals which correspond to the critical intervals of the contrast associated to each corner, localized highly oscillating vibrations are possible near the vertex, which is related to the “black hole” phenomenon.

The paper is organized as follows. In section 2, we present our scalar problem as well as its augmented formulation and give the main results of the paper. Section 3 is devoted to the proof of these results, which mainly consists in investigating the above mentioned resonance phenomena. We conclude with some perspectives.

Throughout the paper, we use the following notations for usual functional spaces. For an open set $\Omega \subset \mathbb{R}^d$ ($d \geq 1$), we denote by $\mathcal{D}(\Omega)$ the space of infinitely differentiable functions with compact support.
Figure 1: Left: The polygonal cavity \(\mathcal{C} \) divided into \(\mathcal{N} \) (NIM: dark gray) and \(\mathcal{V} \) (vacuum: light gray). Middle: an inner vertex \(\alpha_p \) of the interface \(\Sigma \) between \(\mathcal{N} \) and \(\mathcal{V} \). Right: a boundary vertex \(\gamma_q \) of \(\Sigma \) contained in \(\Omega \), by \(L^2(\Omega) \) the space of square integrable functions in \(\Omega \), by \(H^s(\Omega) \) the usual Sobolev space of order \(s \) and by \(H^1_0(\Omega) \) the closure of \(D(\Omega) \) in \(H^1(\Omega) \). Moreover, in order to avoid the appearance of non meaningful constants in inequalities, we employ the symbols \(\lesssim \) and \(\gtrsim \) which mean that the inequality is satisfied up to a positive factor which does not depend on the parameters involved in the inequality (for instance, \(|f(x)| \lesssim 1 \) means that \(f \) is bounded).

2 Formulation of the problem and main results

2.1 Original non-linear problem

Our aim is to study the spectral properties of a two-dimensional bounded cavity partially filled with a NIM. We consider a polygonal cavity \(\mathcal{C} \) (bounded open set of \(\mathbb{R}^2 \)) divided into two open polygonal domains \(\mathcal{N} \) and \(\mathcal{V} \) (such that \(\overline{\mathcal{N}} \cup \overline{\mathcal{V}} = \overline{\mathcal{C}} \) and \(\mathcal{N} \cap \mathcal{V} = \emptyset \), see fig. 1). As these notations suggest, \(\mathcal{N} \) and \(\mathcal{V} \) are filled respectively with a NIM and vacuum. We denote by \(\Sigma \) the interface between \(\mathcal{N} \) and \(\mathcal{V} \) (that is, \(\Sigma := \partial \mathcal{N} \cap \partial \mathcal{V} \)), which clearly consists of one or several polygonal curve(s). In the case of several curves, we assume that they do not intersect (in particular checkerboard-like cavities are excluded).

We consider in this paper the simplest model of NIM, known as the non-dissipative Drude model, for which the electric permittivity and the magnetic permeability are respectively defined in the frequency domain by

\[
\varepsilon_\lambda^\mathcal{N} := \varepsilon_0 \left(1 - \frac{\Lambda_e}{\lambda} \right) \quad \text{and} \quad \mu_\lambda^\mathcal{N} := \mu_0 \left(1 - \frac{\Lambda_m}{\lambda} \right),
\]

where \(\lambda := \omega^2 \) denotes the square of the (circular) frequency, \(\varepsilon_0 \) and \(\mu_0 \) are the permittivity and the permeability of the vacuum and the coefficients \(\Lambda_e \) and \(\Lambda_m \) are positive constants which characterize the Drude material. Such a material is a negative material at low frequencies (since \(\varepsilon_\lambda^\mathcal{N} < 0 \) if \(0 < \lambda < \Lambda_e \), respectively \(\mu_\lambda^\mathcal{N} < 0 \) if \(0 < \lambda < \Lambda_m \)) and behaves like the vacuum at high frequencies (since \(\varepsilon_\lambda^\mathcal{N} \to \varepsilon_0 \) and \(\mu_\lambda^\mathcal{N} \to \mu_0 \) when \(\lambda \to +\infty \)). Note that the ratio \(\mu_\lambda^\mathcal{N} / \mu_0 \) (respectively, \(\varepsilon_\lambda^\mathcal{N} / \varepsilon_0 \)) is equal to the critical value \(-1 \) if \(\lambda = \Lambda_m / 2 \) (respectively, \(\lambda = \Lambda_e / 2 \)).

In \(\mathcal{V} \), the permittivity and permeability are those of the vacuum, which leads us to introduce two piecewise constant functions defined in the cavity \(\mathcal{C} \) by

\[
\varepsilon_\lambda(x) := \varepsilon_0 \left(1 - \mathbf{1}_\mathcal{N}(x) \frac{\Lambda_e}{\lambda} \right) \quad \text{and} \quad \mu_\lambda(x) := \mu_0 \left(1 - \mathbf{1}_\mathcal{N}(x) \frac{\Lambda_m}{\lambda} \right)
\]

for \(x \in \mathcal{C} \), where \(\mathbf{1}_\mathcal{N} \) denotes the indicator function of \(\mathcal{N} \). Our purpose is to investigate the following eigenvalue problem:

\[
\text{Find } \lambda \in \mathbb{C} \text{ and a nonzero } \varphi \in H^1_0(\mathcal{C}) \text{ such that}
\]

\[
\text{div} \left(\frac{1}{\mu_\lambda} \text{ grad } \varphi \right) + \lambda \varepsilon_\lambda \varphi = 0 \quad \text{in } \mathcal{C}.
\]
Figure 2: The dots on the λ-axis represent the inverse image of $\sigma(-\Delta_{\text{dir}}) = \{x_n^{\text{dir}}; n \geq 1\}$ under the function f defined in (5) (in the case $\Lambda_e < \Lambda_m$).

The latter equation has to be understood in the distributional sense. In other words, the above problem is a condensed form of the following system:

$$
\begin{align*}
\Delta \varphi + \lambda \varepsilon N \mu_X^N \varphi &= 0 \quad \text{in } \mathcal{N}, \\
\Delta \varphi + \lambda \varepsilon_0 \mu_0 \varphi &= 0 \quad \text{in } \mathcal{V}, \\
[f]_\Sigma &= 0 \quad \text{and } \left[\frac{1}{\mu} \frac{\partial \varphi}{\partial n} \right]_\Sigma = 0, \\
\varphi &= 0 \quad \text{on } \partial \mathcal{C},
\end{align*}
$$

where $[f]_\Sigma$ denotes the jump of a function f across Σ, that is, the difference of the traces of f obtained from both sides. In the transmission conditions (4c), n denotes a unit normal to Σ. These conditions couple the Helmholtz equations (4a) and (4b) on both sides of Σ. The Dirichlet boundary condition (4d) is contained in the choice of the Sobolev space $H^1_0(\mathcal{C})$ for φ.

The above eigenvalue problem is clearly non-linear with respect to λ, unless \mathcal{N} is empty (i.e., \mathcal{C} only contains vacuum). In this latter case, (3) is linear since it reduces to (4b)-(4d), which means that $\lambda \varepsilon_0 \mu_0$ is an eigenvalue of the Dirichlet Laplacian, that is, the self-adjoint operator $-\Delta_{\text{dir}}$ defined by

$$
-\Delta_{\text{dir}} \varphi := -\Delta \varphi, \quad \forall \varphi \in D(-\Delta_{\text{dir}}) := \left\{ \varphi \in H^1_0(\mathcal{C}); \Delta \varphi \in L^2(\mathcal{C}) \right\}.
$$

It is well known that the spectrum $\sigma(-\Delta_{\text{dir}})$ of this operator is purely discrete: it is composed of a sequence of positive eigenvalues of finite multiplicity which tends to $+\infty$.

On the other hand, if $\mathcal{V} = \emptyset$ (i.e., if \mathcal{C} only contains the Drude material), (3) reduces to (4b)-(4d), which means that $\lambda \varepsilon^N \mu_X^N$ is an eigenvalue the operator $-\Delta_{\text{dir}}$ defined above. Hence the set of eigenvalues of our non-linear problem is simply the inverse image of $\sigma(-\Delta_{\text{dir}})$ under the function f defined by

$$
f(\lambda) := \lambda \varepsilon^N \mu_X^N = \lambda \varepsilon_0 \mu_0 \left(1 - \frac{\Lambda_e}{\lambda} \right) \left(1 - \frac{\Lambda_m}{\lambda} \right),
$$

which is represented in fig. 2. As $f(\lambda)$ tends to $+\infty$ when λ goes to 0 or $+\infty$, the eigenvalues accumulate at $+\infty$ as well as 0.

Of course, when both vacuum and Drude material are present in the cavity, such simple arguments can no longer be used. We show in the next subsection that the non-linear eigenvalue problem (3) can be transformed equivalently into a linear one which involves a self-adjoint operator, thanks to the introduction of an additional unknown. This transformation may seem magical at first glance, especially the fact that the resulting problem is self-adjoint. As mentioned in the introduction, it is actually a simple application of a general method [16, 25] (which includes dissipative problems).

2.2 Linearization of the problem

Let us first introduce some notations. We denote by $\mathcal{R} : L^2(\mathcal{C}) \to L^2(\mathcal{N})$ the operator of restriction from \mathcal{C} to \mathcal{N} and by $\mathcal{R}^* : L^2(\mathcal{N}) \to L^2(\mathcal{C})$ the operator of extension by 0 from \mathcal{N} to \mathcal{C}, that is, for all
\((\varphi, \psi) \in L^2(\mathcal{C}) \times L^2(\mathcal{N}),\)

\[\mathcal{R}\varphi := \varphi|_{\mathcal{N}} \quad \text{and} \quad \mathcal{R}^*\psi(x) := \begin{cases} \psi(x) & \text{if } x \in \mathcal{N}, \\ 0 & \text{if } x \in \mathcal{V}. \end{cases} \]

These operators are clearly adjoint to each other since

\[\int_{\mathcal{N}} \mathcal{R}\varphi(x) \overline{\psi(x)} \, dx = \int_{\mathcal{C}} \varphi(x) \overline{\mathcal{R}^*\psi(x)} \, dx. \]

Note that \(\mathcal{R}\mathcal{R}^*\) is the identity in \(L^2(\mathcal{N})\), whereas \(\mathcal{R}^*\mathcal{R}\) is the operator of multiplication by \(1_{\mathcal{N}}\) in \(L^2(\mathcal{C})\).

We shall keep the same notations \(\mathcal{R}\) and \(\mathcal{R}^*\) if \(\varphi\) and \(\psi\) are replaced by vector-valued functions in \(L^2(\mathcal{C})^2 \times L^2(\mathcal{N})^2\).

The construction of a linear eigenvalue problem equivalent to (3) is quite simple. Suppose that \(\lambda \notin \{0, \Lambda_m\}\), so that \(\mu_0^{-1}\) and \(\varepsilon\) remain bounded. Using the definition (2) of \(\varepsilon\) and \(\mu_0\), which shows in particular that

\[\frac{1}{\mu_0} = \frac{1}{\mu_0} \left(1 + \frac{\Lambda_m}{\lambda - \Lambda_m} \right), \]

we can rewrite (3) in the form

\[\frac{1}{\varepsilon \mu_0} \text{div} \left\{ \left(1 + \frac{\Lambda_m}{\lambda - \Lambda_m} \right) \text{grad} \varphi \right\} + (\lambda - \Lambda_m) \varepsilon \varphi = 0. \]

Hence, setting

\[u := \frac{\Lambda_m}{\lambda - \Lambda_m} \mathcal{R} \text{grad} \varphi, \]

equation (3) is equivalent to

\[\frac{-1}{\varepsilon \mu_0} \text{div} \{ \text{grad} \varphi + \mathcal{R}^*u \} + 1_{\mathcal{N}} \Lambda_m \varphi = \lambda \varphi \quad \text{in } \mathcal{C}, \]

\[\Lambda_m \mathcal{R} \text{grad} \varphi + \Lambda_m u = \lambda u \quad \text{in } \mathcal{N}, \]

where the latter equation is nothing but the definition (6) of \(u\). In this system of equations, \(\lambda\) only appears in the right-hand side: it is a linear eigenvalue problem for the pair \((\varphi, u)\). To sum up, if \(\lambda \notin \{0, \Lambda_m\}\), a function \(\varphi \in H^1_0(\mathcal{C})\) is a solution to (3) if and only if \((\varphi, u) \in H^1_0(\mathcal{C}) \times L^2(\mathcal{N})^2\) satisfies

\[\mathbb{A} \begin{pmatrix} \varphi \\ u \end{pmatrix} = \lambda \begin{pmatrix} \varphi \\ u \end{pmatrix} \]

where

\[\mathbb{A} \begin{pmatrix} \varphi \\ u \end{pmatrix} := \begin{pmatrix} \frac{-1}{\varepsilon \mu_0} \text{div} \{ \text{grad} \varphi + \mathcal{R}^*u \} + 1_{\mathcal{N}} \Lambda_m \varphi \\ \Lambda_m \mathcal{R} \text{grad} \varphi + \Lambda_m u \end{pmatrix}. \]

Our aim is to investigate the spectrum of \(\mathbb{A}\). We first have to make precise the proper functional framework in which \(\mathbb{A}\) is self-adjoint. Consider the Hilbert space

\[\mathcal{H} := L^2(\mathcal{C}) \times L^2(\mathcal{N})^2 \]

equipped with the inner product

\[\left((\varphi, u), (\varphi', u') \right)_\mathcal{H} := \varepsilon \mu_0 \int_{\mathcal{C}} \varphi(x) \overline{\varphi'(x)} \, dx + \frac{1}{\Lambda_m} \int_{\mathcal{N}} u(x) \cdot \overline{u'(x)} \, dx. \]

Proposition 1. The operator \(\mathbb{A}\) defined by (9) with domain

\[D(\mathbb{A}) := \left\{ (\varphi, u) \in H^1_0(\mathcal{C}) \times L^2(\mathcal{N})^2; \text{ div}(\text{grad} \varphi + \mathcal{R}^*u) \in L^2(\mathcal{C}) \right\} \]

is selfadjoint and non-negative in \(\mathcal{H}\).
Proof. Consider the following sesquilinear form a defined for all pairs $\Phi := (\varphi, u)$ and $\Phi' := (\varphi', u')$ in $D(a) := H^1_0(\mathcal{C}) \times L^2(\mathcal{N})^2$ equipped with the usual norm, denoted by $\| \cdot \|_{D(a)}$:

$$a(\Phi, \Phi') := \int_{\mathcal{C}} (\text{grad} \, \varphi + \mathcal{R}^* u) \cdot (\text{grad} \, \varphi' + \mathcal{R}^* u') \, dx + \Lambda_0 \varepsilon_0 \mu_0 \int_{\mathcal{N}} \varphi \varphi' \, dx.$$

Thanks to Green’s formula, we deduce from the definition (9) of \mathcal{A} that

$$(\mathcal{A} \Phi, \Phi')_\mathcal{H} = a(\Phi, \Phi') \quad \forall \Phi \in D(\mathcal{A}), \forall \Phi' \in D(a). \quad (12)$$

It is clear that a is continuous, non-negative and symmetric in $D(a)$, which is continuously embedded in \mathcal{H}. Hence, if there exist $\lambda \in \mathbb{R}$ and $m > 0$ such that

$$a(\Phi, \Phi) + \lambda \| \Phi \|^2_{\mathcal{H}} \geq m \| \Phi \|_{D(a)}^2 \quad \forall \Phi \in D(a), \quad (13)$$

it is well-known [20] that (12) defines a unique non-negative self-adjoint operator \mathcal{A} with domain

$$D(\mathcal{A}) := \{ \Phi \in D(a) ; \exists \Psi \in \mathcal{H}, \forall \Phi' \in D(a), \, a(\Phi, \Phi') = (\Psi, \Phi')_\mathcal{H} \}.$$

It is easy to see that this definition coincide with (11). In order to check inequality (13), note that for any $\lambda > 0$, we have

$$\| \text{grad} \, \varphi + \mathcal{R}^* u \|_{L^2(\mathcal{C})}^2 = \left\| \sqrt{\frac{\Lambda_m}{\lambda}} \text{grad} \, \varphi + \sqrt{\frac{\Lambda_m}{\lambda}} \mathcal{R}^* u \right\|_{L^2(\mathcal{C})}^2$$

$$+ \left(1 - \frac{\Lambda_m}{\lambda} \right) \| \text{grad} \, \varphi \|_{L^2(\mathcal{C})}^2 + \left(1 - \frac{\lambda}{\Lambda_m} \right) \| u \|_{L^2(\mathcal{N})}^2.$$

As a consequence,

$$a(\Phi, \Phi) + \lambda \| \Phi \|^2_{\mathcal{H}} \geq \left(1 - \frac{\Lambda_m}{\lambda} \right) \| \text{grad} \, \varphi \|_{L^2(\mathcal{C})}^2 + \lambda \varepsilon_0 \mu_0 \| \varphi \|_{L^2(\mathcal{C})}^2 + \| u \|_{L^2(\mathcal{N})}^2.$$

So, if $\lambda > \Lambda_m$, inequality (13) holds with $m = \min(1 - \Lambda_m/\lambda, \lambda \varepsilon_0 \mu_0, 1)$. \hfill \Box

2.3 Main results

Proposition 1 tells us that the spectrum $\sigma(\mathcal{A})$ of \mathcal{A} is real and non-negative. Contrarily to the case of a cavity filled by ordinary materials, this spectrum is not only discrete. The purpose of the present paper is precisely to describe and analyze the content of the essential spectrum $\sigma_{\text{ess}}(\mathcal{A})$ of \mathcal{A}.

Recall (see, e.g., [15]) that the discrete spectrum $\sigma_{\text{disc}}(\mathcal{A})$ is the set of isolated eigenvalues of finite multiplicity. The essential spectrum is its complement in the spectrum, that is, $\sigma_{\text{ess}}(\mathcal{A}) := \sigma(\mathcal{A}) \setminus \sigma_{\text{disc}}(\mathcal{A})$, which contains either accumulation points of the spectrum or isolated eigenvalues of infinite multiplicity. Our study of $\sigma_{\text{ess}}(\mathcal{A})$ is based on a convenient characterization of the essential spectrum: a real number λ belongs to $\sigma_{\text{ess}}(\mathcal{A})$ if and only if there exists a sequence $(\Phi_n)_{n \in \mathbb{N}} \subset D(\mathcal{A})$ such that

$$\| \Phi_n \|_{\mathcal{H}} = 1, \quad \lim_{n \to \infty} \| \mathcal{A} \Phi_n - \lambda \Phi_n \|_{\mathcal{H}} = 0 \quad \text{and} \quad \lim_{n \to \infty} (\Phi_n, \Psi)_{\mathcal{H}} = 0, \quad \forall \Psi \in \mathcal{H},$$

which is called a Weyl sequence for λ (or a singular sequence). The two first conditions actually characterize any point of $\sigma(\mathcal{A})$, whereas the last one (weak convergence to 0) is specific to $\sigma_{\text{ess}}(\mathcal{A})$.

We summarize below the main results of the paper about the various components of $\sigma_{\text{ess}}(\mathcal{A})$.

First, the value $\lambda = \Lambda_m$ is an eigenvalue of infinite multiplicity of \mathcal{A} (see Proposition 3). The non-linear eigenvalue problem (3) does not make sense for this particular value, since μ_λ^{-1} becomes infinite in \mathcal{N}. We will see that this eigenvalue of \mathcal{A} is actually an artifact of the augmented formulation (see remark 4).

The other components of $\sigma_{\text{ess}}(\mathcal{A})$ correspond to various unusual resonance phenomena. A bulk resonance in the Drude material corresponds to the value $\lambda = 0$, which is an accumulation point of the
concentrates near Λ inner vertices in the essential spectrum. To make this set precise, we have to distinguish between the to 1), this set fills almost \(\emptyset \).

On the other hand, for a boundary vertex α whereas if $\alpha = 0$ or 2 $\alpha \in \Pi$, the boundary ∂C gives rise to a continuous set \(\{ \lambda \in \mathbb{R}; \ 0 < |\lambda - \frac{\Lambda_m}{2}| < \frac{\Lambda_m}{2} \} \) of surface resonances.

Each column shows two different cavities leading to the same essential spectrum represented by dots and a thick line on the λ-axis.

![Figure 3: Examples of cavities leading to an essential spectrum which is symmetric with respect to $\Lambda_m/2$.](image)

The main result of this paper is the following theorem whose proof is the subject of the next section (in particular section 3.6).

Theorem 2. Suppose that $\mathcal{N} \neq \emptyset$ and $\mathcal{V} \neq \emptyset$. Then the essential spectrum of \mathcal{A} is given by

$$
\sigma_{\text{ess}}(\mathcal{A}) = \{0, \Lambda_m/2, \Lambda_m\} \cup \bigcup_{p=1}^{P} \mathcal{J}_p \cup \bigcup_{q=1}^{Q} \mathcal{I}_q.
$$

Moreover the eigenvalues of the discrete spectrum $\sigma_{\text{disc}}(\mathcal{A})$ accumulate at 0 and $+\infty$.

Figures 3 and 4 show various examples which illustrate this theorem.

In fig. 3, each cavity has an essential spectrum which is symmetric with respect to $\Lambda_m/2$. This clearly holds if there is no boundary vertex B_q (that is, if $\Sigma \cap \partial C = \emptyset$), since the sets \mathcal{J}_p are symmetric. This is
shown in the left column where we notice that the essential spectrum remains unchanged if we interchange both media, since \mathcal{J}_p is unchanged if α_p is replaced by $2\pi - \alpha_p$. The middle column highlights the fact that $\mathcal{I}_q = \emptyset$ if $\beta_q = \gamma_q/2$, that is, if the angles of both Drude and vacuum sectors at a boundary vertex B_q are equal. Finally, the right column illustrates the fact that \mathcal{I}_q is equal to one of the two intervals which compose \mathcal{J}_p if $2\beta_q/\gamma_q = \alpha_p/\pi$. Hence, two very different cavities may have the same essential spectrum.

Figure 4 shows examples of cavities leading to an essential spectrum which is no longer symmetric with respect to $\Lambda_m/2$. We notice that if we interchange both media, the new essential spectrum is simply deduced from the initial one by a symmetry with respect to $\Lambda_m/2$, which holds true for all cavities considered here.

3 Exploration of the spectrum

3.1 Preliminaries

We have seen in section 2.2 that the equivalence between (3) and (8) holds if λ is different from 0 and Λ_m. Indeed the non-linear eigenvalue problem (3) does not make sense for these particular values which are poles of ε_λ and μ_λ^{-1} respectively. On the other hand, these singularities disappear in the linear eigenvalue problem (8). The following proposition tells us that 0 is not an eigenvalue of \mathbb{A}, whereas Λ_m is an eigenvalue of infinite multiplicity of \mathbb{A}.

Proposition 3. We have $\text{Ker } \mathbb{A} = \{0\}$ and $\text{Ker}(\mathbb{A} - \Lambda_m I) = \mathcal{H}_\infty \oplus \mathcal{H}_0$ where $\mathcal{H}_\infty := \{ (0, u) \in \mathcal{H}; \text{div } u = 0 \text{ in } \mathcal{N} \text{ and } u \cdot n = 0 \text{ on } \Sigma \} \text{ is of infinite dimension whereas } \mathcal{H}_0 \text{ is a finite dimensional subspace of } \mathcal{H}.$

Proof. Suppose that $(\varphi, u) \in \text{Ker } \mathbb{A}$, which means that $(\varphi, u) \in D(\mathbb{A})$ satisfies (7a) and (7b) with $\lambda = 0$. Equation (7b) shows that $u = -\mathcal{R} \text{grad } \varphi$, so that (7a) becomes

$$\frac{1}{\varepsilon_0 \mu_0} \text{div}(1_\mathcal{V} \text{grad } \varphi) = \Lambda_c 1_\mathcal{N} \varphi \quad \text{in } \mathcal{C}. $$

The left-hand side of this equation vanishes in \mathcal{N}, therefore $\varphi = 0$ in \mathcal{N}, which implies that $u = 0$. Moreover, this equation shows that $\Delta \varphi = 0$ in \mathcal{V}. The trace of φ vanishes on $\partial \mathcal{V} \cap \partial \mathcal{C}$ (since $\varphi \in H_0^1(\mathcal{C})$) as well as on Σ (since φ is continuous across Σ, see (4c)), which implies that $\varphi = 0$ in \mathcal{V}. We conclude that $(\varphi, u) = (0, 0)$.

Suppose now that $(\varphi, u) \in \text{Ker}(\mathbb{A} - \Lambda_m I)$, which means that $(\varphi, u) \in D(\mathbb{A})$ satisfies (7a) and (7b) with
\(\lambda = \Lambda_m \), that is,

\[
-\frac{1}{\varepsilon_0\mu_0} \text{div} \left\{ \text{grad} \varphi + R^* u \right\} + (1_N \Lambda_e - \Lambda_m) \varphi = 0 \quad \text{in } \mathcal{C},
\]

\[
R \text{grad} \varphi = 0 \quad \text{in } \mathcal{N}.
\]

The latter equation implies that \(\varphi \) is constant in \(\mathcal{N} \). Assuming for simplicity that \(\partial \mathcal{N} \cap \partial \mathcal{C} \neq \emptyset \), this constant must vanish (since \(\varphi|_{\partial \mathcal{C}} = 0 \)), so the former equation shows on the one hand that \(\varphi_V := \varphi|_{\mathcal{V}} \) is a solution in \(H^1_0(\mathcal{V}) \) to

\[
-\Delta \varphi_V - \varepsilon_0\mu_0\Lambda_m \varphi_V = 0 \quad \text{in } \mathcal{V},
\]

and on the other hand that \(u \) satisfies

\[
\text{div} u = 0 \quad \text{in } \mathcal{N} \quad \text{and} \quad u \cdot n = \frac{\partial \varphi_V}{\partial n} \quad \text{on } \Sigma.
\]

If \(\varepsilon_0\mu_0\Lambda_m \) is not an eigenvalue of the Dirichlet Laplacian in \(\mathcal{V} \), we conclude that \(\varphi_V = 0 \). This shows that \(\text{Ker}(A - \Lambda_m I) \) coincide in this case with the subspace \(\mathcal{H}_\infty \) defined in the proposition, whose dimension is clearly infinite since it contains all pairs \((0, \text{curl}_2 \psi)\) where \(\psi \in H^1(\mathcal{N}) \) satisfies \(\psi|_{\Sigma} = 0 \) (here, \(\text{curl}_2 \psi \) denotes the two-dimensional curl of a scalar function, i.e. \(\text{curl}_2 \psi := (\partial \psi/\partial y, -\partial \psi/\partial x) \)).

But if by chance, \(\varepsilon_0\mu_0\Lambda_m \) is an eigenvalue of the Dirichlet Laplacian in \(\mathcal{V} \), then \(\varphi_V \) can be any associated eigenfunction, which yields element \((\phi, u) \in \text{Ker}(A - \Lambda_m I) \) with \(\phi \neq 0 \). Hence in this case, \(\text{Ker}(A - \Lambda_m I) \) does not reduce to \(\mathcal{H}_\infty \), but the orthogonal complement of \(\mathcal{H}_\infty \) in \(\text{Ker}(A - \Lambda_m I) \) has necessarily a finite dimension since the eigenvalues of the Dirichlet Laplacian have a finite multiplicity.

The above arguments are easily adapted if \(\partial \mathcal{N} \cap \partial \mathcal{C} = \emptyset \).

\[\square\]

Remark 4. The above proposition shows that the fact that \(\Lambda_m \) belongs to the essential spectrum of \(A \) is related to the infinite dimensional subspace \(\mathcal{H}_\infty \). The eigenfunctions \((\varphi, u)\) of this subspace are such that \(\varphi = 0 \). Hence these states cannot be revealed by the nonlinear eigenvalue problem (3). This is why \(\Lambda_m \) can be seen as an artifact of the augmented formulation (8).

3.2 Bulk resonance in the Drude material

As mentioned in section 2.3, each point of the essential spectrum of \(A \) (except \(\Lambda_m \)) is related to an unusual resonance phenomenon. The case of \(\lambda = 0 \) is related to the existence at low frequencies of highly oscillating vibrations which are confined in the Drude material. This can be understood intuitively from (4a)–(4d) by first noticing that in the second transmission condition of (4c), \(1/\mu^2 \) tends to 0 when \(\lambda \) tends to 0, which shows that on the vacuum side, the normal derivative of \(\varphi \) must be small. Hence, in the vacuum, \(\varphi \) is close to a solution to the Helmholtz equation (4b) which vanishes on \(\partial \mathcal{V} \cap \partial \mathcal{C} \) and such that \(\partial \varphi / \partial n = 0 \) on \(\Sigma \). The eigenvalues \(\lambda \) of this problem are positive, so the only possible solution for \(\lambda = 0 \) is \(\varphi|_{\mathcal{V}} = 0 \), which means that \(\varphi \) is confined in \(\mathcal{N} \). Besides, we have seen in section 2.1 that in a cavity which only contains a Drude material, eigenvalues accumulate at 0. This gives the idea of the construction of a Weyl sequence for \(\lambda = 0 \).

Consider a sequence \((\varphi_n^N)\) of eigenfunctions of the Dirichlet Laplacian in \(\mathcal{N} \), i.e., a sequence of nonzero solutions \(\varphi_n^N \in H^1_0(\mathcal{N}) \) to \(-\Delta \varphi_n^N = \lambda_n \varphi_n^N \), where \(\lambda_n \) is the sequence of associated eigenvalues, which tends to \(+\infty\). The idea is simply to extend \(\varphi_n^N \) by 0 in \(\mathcal{V} \) and introduce the corresponding auxiliary unknown defined by (6) with \(\lambda = 0 \).

Proposition 5. Let \(\Phi_n := (\varphi_n, u_n) \) where \(\varphi_n := R^* \varphi_n^N \) and \(u_n := -R \text{grad} \varphi_n \). Then \(\Phi_n/\|\Phi_n\|_\mathcal{H} \) is a Weyl sequence for \(\lambda = 0 \).

Proof. As \(\varphi_n^N \in H^1_0(\mathcal{N}) \), we have \(\text{grad}(R^* \varphi_n^N) = R^* \text{grad} \varphi_n^N \), so \(\varphi_n \in H^1_0(\mathcal{C}) \) and \(u_n = -\text{grad} \varphi_n^N \in L^2(\mathcal{N}) \). Moreover, \(\text{div}(\text{grad} \varphi_n + R^* u_n) = 0 \), which shows that \(\Phi_n \in \text{D}(A) \) (see (11)).

Besides, from the definition (9) of \(A \), we see that \(A \Phi_n = (1_N \Lambda_e \varphi_n, 0) \), so

\[
\frac{\|A \Phi_n\|_\mathcal{H}}{\|\Phi_n\|_\mathcal{H}} \leq \frac{\|\varphi_n^N\|_{L^2(\mathcal{N})}}{\|u_n\|_{L^2(\mathcal{N})}} = \frac{\|\varphi_n^N\|_{L^2(\mathcal{N})}}{\|\text{grad} \varphi_n^N\|_{L^2(\mathcal{N})}} = \frac{1}{\sqrt{\lambda_n}}.
\]

\[9\]
where the last equality follows from the definition of ψ_n^N. As $\lambda_n \to +\infty$, we deduce that 0 is in the spectrum of operator Λ.

It is not necessary here to check the weak convergence to 0 of $\Phi_n/\|\Phi_n\|_H$. Indeed, proposition 3 tells us that 0 is not an eigenvalue of Λ, so it belongs necessarily to its essential spectrum.

3.3 Surface resonance at the interface between both media

We prove now that $\lambda = \Lambda_m/2$ also belongs to the essential spectrum. This value corresponds to the case where $\mu_N^\lambda = -\mu_0$, that is, the critical value -1 of the contrast μ_N^λ/μ_0, which is known to lead to an ill-posed time-harmonic problem (see the references quoted in the introduction). As shown below, it is related to the existence of highly oscillating vibrations that can be localized near any point of the interface Σ except the vertices. We first show how such surface waves can be derived from our initial equation (3).

Surface waves

Consider the case of a rectilinear interface between two half-planes. Choose a Cartesian coordinate system (O, x_1, x_2) so that the half-plane $x_1 > 0$ is filled by our NIM, whereas $x_1 < 0$ contains vacuum (see fig. 5).

Consider then the equation

$$\text{div} \left(\frac{1}{\mu_{\Lambda_m/2}} \text{grad} \psi \right) = 0,$$

which is deduced from (3) with $\lambda = \Lambda_m/2$ by removing the term $\lambda \varepsilon \varphi$ (as shown in the following, this term acts as a “small” perturbation for highly oscillating solutions). It is readily seen that for any $k > 0$, the function $\exp(i k (x_2 - i|x_1|)$ is a solution to (16). It represents a surface wave which propagates in the direction of the interface and decreases exponentially as $x_1 \to \pm \infty$. Any superposition of such surface waves (for various k) is still solution to (16). In particular, for a given $f \in \mathcal{D}(\mathbb{R}^+)$, the function ψ defined by

$$\psi(x) = \psi(x_1, x_2) := \int_{\mathbb{R}^+} f(k) e^{i k (x_2 - i|x_1|)} \, dk$$

is a solution to (16), as well as

$$\psi_n(x) := \psi(nx_1, nx_2) = \int_{\mathbb{R}^+} \frac{1}{n} f \left(\frac{k}{n} \right) e^{i k (x_2 - i|x_1|)} \, dk \quad \text{for } n \geq 1.$$

Remark 6. By successive integrations par parts, we see that $\psi(x) = o(|x|^{-p})$ for all $p \in \mathbb{N}$ as $|x| := \sqrt{x_1^2 + x_2^2}$ goes to $+\infty$, and the same holds for the first-order partial derivatives of ψ (note that $\partial \psi/\partial x_1$ is discontinuous across $x_1 = 0$). This shows in particular that $\psi \in H^1(\mathbb{R}^2)$. Hence ψ represents vibrations which are localized in a bounded region near the interface, whereas ψ_n becomes more and more confined near O as n increases. Notice that ψ (as well as ψ_n) is symmetric with respect to $x_1 = 0$, that is, $\psi(-x_1, x_2) = \psi(x_1, x_2)$.

![Figure 5: Cartesian coordinates near a point of the interface Σ.](image)
A Weyl sequence

Returning to our cavity, we are now able to construct a Weyl sequence for $\lambda = \Lambda_m/2$. Suppose that the center O of our coordinate system (O, x_1, x_2) is a given point of the interface Σ different from the vertices and that the x_1 and x_2-axes are chosen such that our medium is described by fig. 5 in a vicinity of O. More precisely, this means that one can choose a given small enough $R > 0$ such that $B_R \subset \mathcal{C}$, $\mathcal{N} \cap B_R \subset \{x_1 > 0\}$ and $\mathcal{V} \cap B_R \subset \{x_1 < 0\}$, where we have denoted $B_R := \{x \in \mathbb{R}^2; |x| \leq R\}$ the ball of radius R centered at O. Let us then define

$$\varphi_n := \psi_n \chi \quad \text{and} \quad u_n := -2 \mathcal{R} \text{grad} \varphi_n,$$

where $\chi \in \mathcal{D}(\mathbb{R}^2)$ is a cutoff function which vanishes outside B_R, is equal to 1 in some ball B_{R_1} with $0 < R_1 < R$ and is symmetric with respect to $x_1 = 0$, that is, $\chi(-x_1, x_2) = \chi(x_1, x_2)$. Note that the above definition of u_n follows from (6) with $\lambda = \Lambda_m/2$.

Proposition 7. Let $\Phi_n := (\varphi_n, u_n)$ defined by (17). Then $\Phi_n/\|\Phi_n\|_{\mathcal{H}}$ is a Weyl sequence for $\lambda = \Lambda_m/2$.

Proof. (i) Let us first prove that $\Phi_n \in \mathcal{D}(\Lambda)$. It is clear that ψ_n is a C^∞ function in both half-planes $\pm x_1 > 0$ and is continuous at the interface $x_1 = 0$. Hence $\varphi_n \in H^1_0(\mathcal{C})$ (since $\chi = 0$ on $\partial \mathcal{C}$), which implies that $u_n \in L^2(\mathcal{N})^2$. It remains to check that $\text{div}(\text{grad} \varphi_n + \mathcal{R}^* u_n) = -\text{div}(s_1 \text{grad} \varphi_n)$ belongs to $L^2(\mathcal{C})$, where s_1 denotes the sign function $s_1(x_1, x_2) := \text{sgn} x_1$. As φ_n is smooth on both sides of the interface, this amounts to proving that $s_1 \partial \varphi_n/\partial x_1$ is continuous across the interface. We have

$$\frac{\partial \varphi_n}{\partial x_1} = \psi_n \frac{\partial \chi}{\partial x_1} + \frac{\partial \psi_n}{\partial x_1} \chi.$$

As $\chi \in \mathcal{D}(\mathbb{R}^2)$ is symmetric with respect to $x_1 = 0$, its partial derivative $\partial \chi/\partial x_1$ vanishes on the interface. On the other hand, ψ_n is continuous but not differentiable on the interface. However it is symmetric with respect to $x_1 = 0$, so that $s_1 \partial \psi_n/\partial x_1$ is continuous across the interface, which yields the desired result.

(ii) We prove now that $\|\Lambda \Phi_n - (\Lambda_m/2) \Phi_n\|_{\mathcal{H}}/\|\Phi_n\|_{\mathcal{H}}$ tends to 0 as $n \to \infty$. First, using the fact that ψ_n is solution to (16) where $\mu_{\Lambda_m/2} = -s_1 \mu_0$, we infer that

$$\Lambda \Phi_n - \frac{\Lambda_m}{2} \Phi_n = \left(\frac{s_1}{\varepsilon_0 \mu_0} (2 \text{grad} \psi_n \cdot \text{grad} \chi + \psi_n \Delta \chi) + \left(1 + \Lambda_c - \frac{\Lambda_m}{2} \right) \psi_n \chi \right).$$

As $\text{grad} \chi$ and $\Delta \chi$ vanish outside $B_R \setminus B_{R_1}$, we deduce

$$\left\| \Lambda \Phi_n - \frac{\Lambda_m}{2} \Phi_n \right\|_{\mathcal{H}} \lesssim \left\| \psi_n \right\|_{H^1(B_R \setminus B_{R_1})} + \left\| \psi_n \right\|_{L^2(B_R)}.$$

Both terms of the right-hand side tend to 0 as $n \to \infty$, which follows from the fact that $\psi \in H^1(\mathbb{R}^2)$ (see remark 6). Indeed, by a simple change of variable $nx \to x$, we have on the one hand,

$$\left\| \psi_n \right\|_{L^2(B_R)}^2 = \int_{B_R} |\psi(nx)|^2 \, dx = \frac{1}{n^2} \int_{B_{nR}} |\psi(x)|^2 \, dx \leq \frac{1}{n^2} \left\| \psi \right\|_{L^2(\mathbb{R}^2)}^2 \to 0 \quad (18)$$

and on the other hand, for $j = 1, 2$,

$$\left\| \frac{\partial \psi_n}{\partial x_j} \right\|_{L^2(B_R \setminus B_{R_1})}^2 = \int_{B_{nR} \setminus B_{nR_1}} \left| \frac{\partial \psi}{\partial x_j} \right|^2 \, dx \leq \left\| \frac{\partial \psi}{\partial x_j} \right\|_{L^2(\mathbb{R}^2 \setminus B_{nR_1})}^2 \to 0. \quad (19)$$

It remains to check that $\|\Phi_n\|_{\mathcal{H}} \geq 1$. First notice that

$$\left\| \Phi_n \right\|_{\mathcal{H}} \geq \left\| u_n \right\|_{L^2(\mathcal{N})^2} \geq \left\| \frac{\partial \varphi_n}{\partial x_1} \right\|_{L^2(\mathcal{N})} \geq \left\| \frac{\partial \psi_n}{\partial x_1} \right\|_{L^2(\mathcal{N})} - \left\| \psi_n \frac{\partial \chi}{\partial x_1} \right\|_{L^2(\mathcal{N})}.$$
As \(\chi = 1 \) in \(B_R \) and \(\chi = 0 \) outside \(B_R \), we infer that

\[
\| \Phi_n \|_{\mathcal{H}} \gtrsim \left\| \frac{\partial \psi_n}{\partial x_1} \right\|_{L^2(B_{R_1}^+)} - \left\| \psi_n \right\|_{L^2(B_R^+)} \left\| \frac{\partial \chi}{\partial x_1} \right\|_{L^2(B_R^+)} ,
\]

where we have denoted \(B_{R_1}^+ := B_R \cap \mathcal{N} \). We know from (18) that \(\| \psi_n \|_{L^2(B_R)} \) tends to 0, thus so does \(\| \psi_n \|_{L^2(B_{R_1}^+)} \). Moreover, similarly as in (19), we have

\[
\left\| \frac{\partial \psi_n}{\partial x_1} \right\|_{L^2(B_{R_1}^+)}^2 = \int_{B_{R_1}^+} \left| \frac{\partial \psi}{\partial x_1} (x) \right|^2 \, dx \rightarrow \left\| \frac{\partial \psi}{\partial x_1} \right\|_{L^2(\mathbb{R}^+ \times \mathbb{R})}^2 \geq 0 \quad \text{as} \quad n \to \infty.
\]

We conclude that \(\| \Phi_n \|_{\mathcal{H}} \gtrsim 1 \) for large enough \(n \), so \(\| \Phi_n - (\Lambda_m/2) \Phi_n \|_{\mathcal{H}} / \| \Phi_n \|_{\mathcal{H}} \) tends to 0 as \(n \to \infty \).

(iii) Lastly, we prove that \(\Phi_n \) converges weakly to 0 as \(n \to \infty \) (so the same holds true for \(\Phi_n / \| \Phi_n \|_{\mathcal{H}} \) since \(\| \Phi_n \|_{\mathcal{H}} \gtrsim 1 \)). For any given \(\Psi := (\varphi', \psi') \in \mathcal{D}(\mathcal{C}) \times \mathcal{D}(\mathcal{V}) \), we have

\[
\left| \langle \Phi_n, \Psi \rangle \right| \lesssim \int_{B_R} \left(|\psi(nx)| + n |\text{grad} \psi(nx)| \right) \, dx.
\]

So, using again the change of variable \(nx \to x \), we deduce that

\[
\left| \langle \Phi_n, \Psi \rangle \right| \lesssim \int_{B_{R_1}} \left(\frac{1}{n^2} |\psi(x)| + \frac{1}{n} |\text{grad} \psi(x)| \right) \, dx.
\]

As \(\psi(x) = o(\| x \|^{-p}) \) and \(\text{grad} \psi(x) = o(\| x \|^{-p}) \) for all \(p \in \mathbb{N} \) as \(|x| \to +\infty \) (see remark 6), we infer that \(\psi \) and both components of \(\text{grad} \psi \) belong to \(L^1(\mathbb{R}^2) \). The conclusion follows.

3.4 Corner resonance at an inner vertex

It remains to deal with the intervals of essential spectrum \(\mathcal{J}_p \) and \(\mathcal{I}_q \) defined in section 2.3, associated respectively with the inner and boundary vertices of the interface \(\Sigma \) between \(\mathcal{N} \) and \(\mathcal{V} \). In this subsection, we consider the case of an inner vertex \(C_p \) near which the NIM fills a sector of angle \(\alpha_p \in (0, 2\pi) \) (see fig. 1). The next subsection is devoted to boundary vertices.

Black hole waves

The part of the essential spectrum that we study here is related to the existence of highly oscillating vibrations localized near \(C_p \), which have been interpreted as a “black hole” phenomenon in [4]. We first recall the construction of the so-called black hole waves, first introduced in [8]. As in section 3.3, we are interested in solutions to

\[
\text{div}(\mu_\lambda^{-1} \text{grad} \psi_\lambda) = 0 \quad \text{in the whole plane} \ \mathbb{R}^2 ,
\]

but instead of a plane interface, we suppose now that the two sectors of NIM and vacuum defined near \(C_p \) are extended up to infinity. More precisely, by choosing polar coordinates \((r, \theta) \in \mathbb{R}^+ \times (-\pi, +\pi] \)
We are actually interested in real solutions of these oscillations, \(\text{grad} \ psi \) by which leads to the definition (14) of \(m_\lambda(\theta) \) for \(\lambda = \Lambda_m/4 \) (left, \(m_\lambda \) given by (24)) and \(\lambda = 3\Lambda_m/4 \) (right, \(m_\lambda \) given by (25)).

Figure 7: For \(\alpha_p = \pi/4 \), representation of the real part of the black hole wave \(r^{i\eta_\lambda} m_\lambda(\theta) \) for \(\lambda = \Lambda_m/4 \) (left, \(m_\lambda \) given by (24)) and \(\lambda = 3\Lambda_m/4 \) (right, \(m_\lambda \) given by (25)).

centered at \(C_p \) and such that the Drude sector corresponds to \(|\theta| < \alpha_p/2 \) (see fig. 6, left), this equation writes equivalently as

\[
r \frac{\partial}{\partial r} \left(r \frac{\partial \psi_\lambda}{\partial r} \right) + \mu_\lambda \frac{\partial}{\partial \theta} \left(\frac{1}{\mu_\lambda} \frac{\partial \psi_\lambda}{\partial \theta} \right) = 0
\]

where \(\mu_\lambda = \mu_\lambda(\theta) \) is defined by \(\mu_\lambda(\theta) = \mu_\lambda^N \) if \(|\theta| < \alpha_p/2 \) and \(\mu_\lambda(\theta) = \mu_0 \) if \(|\theta| > \alpha_p/2 \). In this situation, we can use the technique of separation of variables (which would have not been possible without removing the term \(\lambda \epsilon \varphi \) in (3)), which yields

\[
\psi_\lambda(r, \theta) = r^{i\eta_\lambda} m_\lambda(\theta),
\]

where \(\eta_\lambda \) is a complex parameter and the angular modulation \(m_\lambda \) is a \(2\pi \)-periodic solution to

\[
\mu_\lambda \frac{d}{d\theta} \left(\frac{1}{\mu_\lambda} \frac{d m_\lambda}{d\theta} \right) - \eta_\lambda^2 m_\lambda = 0 \quad \text{in} \ (-\pi, +\pi).
\]

(22)

It is easily seen that this equation admits a non-trivial solution if and only if \(\eta_\lambda \) satisfies the dispersion equation

\[
\left(\frac{\sinh (\eta_\lambda(\pi - \alpha_p))}{\sinh(\eta_\lambda\pi)} \right)^2 = \left(\frac{\mu_0 + \mu_\lambda^N}{\mu_0 - \mu_\lambda^N} \right)^2 \quad \text{where} \quad \frac{\mu_0 + \mu_\lambda^N}{\mu_0 - \mu_\lambda^N} = \frac{\lambda - \Lambda_m/2}{\Lambda_m/2}.
\]

(23)

We are actually interested in real solutions \(\eta_\lambda \) of this equation. Indeed, in this case, the radial behavior \(r^{i\eta_\lambda} = \exp(i\eta_\lambda \log r) \) of \(\psi_\lambda \) has a constant amplitude and is increasingly oscillating as \(r \) goes to 0. Because of these oscillations, \(\text{grad} \ psi_\lambda \) is not square-integrable near \(C_p \) (indeed \(|\text{grad} \ psi_\lambda(r, \theta)/\partial r| \to r^{-1} \)). From a physical point of view, this means that any vicinity of \(C_p \) contains an infinite energy. In fact, \(\psi_\lambda \) represents a wave which propagates towards the corner and whose energy accumulates near this corner, which explains its interpretation as a black hole wave.

Without loss of generality, we can restrict ourselves to positive \(\eta_\lambda \). Noticing that the function \((0, +\infty) \ni \eta \mapsto \sinh (\eta(\pi - \alpha_p))/\sinh(\eta\pi)\) is strictly decreasing with range \((0, |1 - \alpha_p/\pi|)\), we infer that (23) has a unique solution \(\eta_\lambda \in (0, +\infty) \) if and only if

\[
0 < \left| \lambda - \frac{\Lambda_m}{2} \right| < \frac{\Lambda_m}{2} \left| 1 - \frac{\alpha_p}{\pi} \right|
\]

which leads to the definition (14) of \(J_p \). Moreover, when \(\lambda \) varies in one of the two intervals which compose \(J_p \), the solution \(\eta_\lambda \) ranges from \(+\infty\) (as \(\lambda \to \Lambda_m/2 \)) to 0 (as \(\lambda \to \{1 \pm |1 - \alpha_p/\pi|\} \Lambda_m/2 \)).

For a given \(\lambda \in J_p \), the expression of the corresponding solution \(m_\lambda \) to (22) depends on the respective signs of the quantities inside both squared terms in (23). Two situations occur. On the one hand, if \((\alpha_p < \pi \text{ and } \lambda < \Lambda_m/2)\) or \((\alpha_p > \pi \text{ and } \lambda > \Lambda_m/2)\), then the angular modulation \(m_\lambda \) is given (up to a complex factor) by

\[
m_\lambda(\theta) := \begin{cases}
\frac{\sinh(\eta_\lambda \theta)}{\sinh(\eta_\lambda \alpha_p/2)} & \text{if } |\theta| < \frac{\alpha_p}{2}, \\
\text{sgn}(\theta) \sinh (\eta_\lambda(\pi - |\theta|)) & \text{if } |\theta| > \frac{\alpha_p}{2}.
\end{cases}
\]

(24)
On the other hand, if \((\alpha_p < \pi \text{ and } \lambda > \Lambda_m/2)\) or \((\alpha_p > \pi \text{ and } \lambda < \Lambda_m/2)\), then

\[
m_\lambda(\theta) := \begin{cases}
\frac{\cosh(\eta\lambda\theta)}{\cosh(\eta\alpha_p/2)} & \text{if } |\theta| < \frac{\alpha_p}{2} \\
\frac{\cosh(\eta_{\lambda}(\pi - |\theta|))}{\cosh(\eta_{\lambda}(\pi - \alpha_p/2))} & \text{if } |\theta| > \frac{\alpha_p}{2}.
\end{cases}
\]

These formulas are illustrated by fig. 7 which represents the associated black hole wave defined by (21) in two particular cases that correspond to the same \(\eta_{\lambda}\). Both figures are very similar: both represent surface waves which propagate along the interfaces and concentrate near the vertex. The main difference is the symmetry or skew-symmetry with respect to the symmetry axis of the corner.

Weyl sequences

Black hole waves are the basic ingredients for the construction of Weyl sequences here. As mentioned above, the gradient of \(\psi_{\lambda}\) is not square-integrable near \(C_p\) because of its increasingly oscillating behavior. Hence, a natural idea for a Weyl sequence is to truncate \(\psi_{\lambda}\) using a sequence of cutoff functions whose supports get closer and closer to \(C_p\). As shown at the end of this subsection, this is a bad idea! A proper idea to define a Weyl sequence for a given \(\lambda_* \in J_p\) consists in considering continuous superpositions of the black hole waves \(\psi_{\lambda}\), choosing smooth densities of superposition with increasingly small supports near \(\lambda_*\). Such superpositions regularize the behavior of the black hole waves near the corner (thanks to the smoothness of the densities) and resemble more and more \(\psi_{\lambda_*}\) (thanks to the increasingly small supports).

From a practical point of view, it is actually more convenient to consider superpositions with respect to the variable \(\eta\) (instead of \(\lambda\)) near \(\eta_* := \eta_{\lambda_*} \in (0, +\infty)\). This leads to introduce the inverse function \(\eta \mapsto \lambda(\eta)\) of \(\lambda \mapsto \eta_{\lambda}\) considered in the half part of \(J_p\) which contain our given \(\lambda_*\). We deduce from (23) that this function is given by

\[
\lambda(\eta) = \frac{\Lambda_m}{2} \left(1 + \text{sgn}\left(\lambda_* - \frac{\Lambda_m}{2} \right) \frac{\sinh (\eta \pi - \alpha_p/2)}{\sinh (\eta \pi)} \right), \quad \forall \eta \in (0, +\infty).
\]

Then, for all integer \(n \geq 1\), we define

\[
\left(\varphi_n, u_n \right) := \left(\varphi_n, \tilde{u}_n \right) \quad \text{where} \quad \left\{ \begin{align*}
\varphi_n & := \int_{\mathbb{R}} f_n(\eta) \psi_{\lambda(\eta)} \, d\eta \quad \text{and} \\
\tilde{u}_n & := \int_{\mathbb{R}} f_n(\eta) \frac{\Lambda_m}{\lambda(\eta) - \Lambda_m} \mathcal{R} \text{grad} \psi_{\lambda(\eta)} \, d\eta,
\end{align*} \right.
\]

where \(\chi\) and \(f_n\) are chosen as follows. First choose some \(R > 0\) such that \(\mathcal{N} \cap B_R\) and \(\mathcal{V} \cap B_R\) are contained respectively in the sectors \(|\theta| < \alpha_p/2\) and \(|\theta| > \alpha_p/2\). On the one hand, \(\chi \in \mathcal{D}(\mathbb{R}^2)\) is a cutoff function with support in the ball \(B_R\) of radius \(R\) centered at \(C_p\) and equal to 1 in \(B_{R_1}\) for some \(R_1 \subset (0, R)\). On the other hand, for a given function \(f \in \mathcal{D}(\mathbb{R})\) with support contained in \((-\eta_*, +\eta_*)\) and such that \(\int_{\mathbb{R}} f(\eta) \, d\eta = 1\), we define \(f_n(\eta) := n f(n(\eta - \eta_*))\) for all \(n \geq 1\) (it is an easy exercise to prove that \(f_n\) tends to the Dirac measure at \(\eta_*\) in the distributional sense). Note finally that, as in section 3.3, the above definition of \(\tilde{u}_n\) follows from that of \(\varphi_n\) using (6) inside the integral.

Proposition 8. Let \(\Phi := (\varphi_n, u_n)\) defined by (26). Then \(\Phi \| \Phi \|_\mathcal{H}\) is a Weyl sequence for \(\lambda_* \in J_p\).

Proof. (i) Let us first examine some general properties of \(\varphi_n\) and \(\tilde{u}_n\), in particular their behavior near the vertex. Using the change of variables \(\xi = n(\eta - \eta_*), \lambda_{n_* + \xi/n}\), we have

\[
|\varphi_n(r, \theta)| = \left| \int_{\mathbb{R}} f(\xi) r^{i(\eta_0 + \xi/n)} m_{n_* + \xi/n}(\theta) \, d\xi \right| \lesssim 1,
\]

since the sequence of functions \((\xi, \theta) \mapsto m_{n_* + \xi/n}(\theta)\) is uniformly bounded. Setting \(g_n(\xi, \theta) := f(\xi) m_{n_* + \xi/n}(\theta)\) and integrating by part yields

\[
|\varphi_n(r, \theta)| = \frac{|n r^{in_*}|}{| \log r |} \int_{\mathbb{R}} \left| \frac{\partial g_n}{\partial \xi}(\xi, \theta) r^{i \xi/n} \right| \, d\xi \lesssim \frac{n}{| \log r |},
\]

14
which shows that unlike ψ_λ, each function $\tilde{\varphi}_n$ tends to 0 as $r \to 0$.

Similar arguments can be used for both components of $\nabla \tilde{\varphi}_n$ and \tilde{u}_n. The only change is the appearance of a factor r^{-1}. We obtain on the one hand

$$|\nabla \tilde{\varphi}_n(r, \theta)| \lesssim \frac{1}{r} \quad \text{and} \quad |\tilde{u}_n(r, \theta)| \lesssim \frac{1}{r},$$

and on the other hand

$$|\nabla \tilde{\varphi}_n(r, \theta)| \lesssim \frac{n}{r |\log r|} \quad \text{and} \quad |\tilde{u}_n(r, \theta)| \lesssim \frac{n}{r |\log r|}.$$

(ii) We check now that $\Phi_n \in D(A)$. First, (27) shows that $\tilde{\varphi}_n \in L^2(C)$ and $||\tilde{\varphi}_n||_{L^2(C)}$ is bounded, so the same holds true for φ_n. Then, as $r^{-1} |\log r|^{-2}$ is integrable near $r = 0$, (29) shows that $\nabla \tilde{\varphi}_n \in L^2(C)^2$ and $\tilde{u}_n \in L^2(N)^2$, so $\varphi_n \in H_0^1(C)$ (since χ vanishes near ∂C) and $u_n \in L^2(N)^2$. It remains to check that $\operatorname{div}(\nabla \varphi_n + R^* u_n) \in L^2(C)$. We have

$$\operatorname{div}(\nabla \varphi_n + R^* u_n) = \chi \operatorname{div}(\nabla \tilde{\varphi}_n + R^* \tilde{u}_n) + \nabla \chi \cdot \left(2 \nabla \tilde{\varphi}_n + R^* \tilde{u}_n \right) + (\Delta \chi) \tilde{\varphi}_n.$$

The first term of the right-hand side writes as

$$\chi \operatorname{div}(\nabla \tilde{\varphi}_n + R^* \tilde{u}_n) = \chi \int_C f_n(\eta) \operatorname{div} \left(\frac{\mu_0}{\mu(\eta)} \nabla \psi_{\lambda(\eta)} \right) d\eta,$$

which vanishes since $\psi_{\lambda(\eta)}$ satisfies (20). Both remaining terms belong to $L^2(C)$, for $\nabla \varphi_n$, $\nabla \tilde{\varphi}_n$ and $R^* \tilde{u}_n$ are square integrable in C, which yields the desired result. Moreover, we can notice that these terms are bounded in $L^2(C)$, which follows from (27) and (28) and the fact that $\nabla \chi$ and $\Delta \chi$ vanish near C_p. Hence $\operatorname{div}(\nabla \varphi_n + R^* u_n)$ is bounded in $L^2(C)$.

(iii) Let us prove that $A\Phi_n - \lambda_\ast \Phi_n$ is bounded in H. We have

$$A \Phi_n - \lambda_\ast \Phi_n = \begin{pmatrix} -\frac{1}{\xi^0} & \nabla \{ \nabla \varphi_n + R^* u_n \} + (1 - \Lambda_\ast) \varphi_n \\ \Lambda \nabla \varphi_n + (\Lambda - \lambda_\ast) u_n \end{pmatrix}.$$

The first component is bounded in $L^2(C)$ since we have just seen that $\operatorname{div}(\nabla \varphi_n + R^* u_n)$ and φ_n are bounded in $L^2(C)$. The second component can be split as

$$\Lambda \nabla \varphi_n + \left(\Lambda - \lambda_\ast \right) u_n.$$

The first term is clearly bounded in $L^2(N)^2$ (by (27)) and the second writes as $\chi \Lambda \nabla I_n$ where

$$I_n := \int_C f_n(\eta) \lambda(\eta) - \lambda_\ast \Lambda \nabla \psi_{\lambda(\eta)} d\eta.$$

We can use the same arguments as in (i) to study this integral, noticing that

$$\frac{\lambda(\eta) - \lambda_\ast}{\lambda(\eta) - \Lambda} = (\eta - \eta_\ast) \tau(\eta)$$

where $\tau \in C^\infty(\mathbb{R}_+)$ (since $\lambda \in C^\infty(\mathbb{R}_+)$, $\lambda(\eta) = \lambda_\ast$ and $\lambda(\eta) - \Lambda_m$ never vanishes). Using the change of variables $\xi = n(\eta - \eta_\ast)$, the integral becomes

$$I_n = \int_{\mathbb{R}} f(\xi) \frac{\xi}{n} \tau(\eta + \xi/n) \nabla \psi_{\lambda(\eta + \xi/n)} d\xi.$$

Compared with the case of $\nabla \tilde{\varphi}_n$ and \tilde{u}_n considered in (i), the only change lies in the factor n^{-1}. Hence, instead of (29), an integration by parts shows that $|I_n(r, \theta)| \lesssim r^{-1} |\log r|^{-1}$, which implies that I_n is bounded in $L^2(N)^2$ and yields the conclusion.
(iv) It remains to prove that \(\| \Phi_n \|_{H} \) tends to \(\infty \) as \(n \to \infty \). First notice that \(\| \Phi_n \|_{H} \gtrsim \| u_n \cdot e_r \|_{L^2(\mathbb{R})} \), where \(e_r \) is the unit local basis vector in the radial direction. For all \(r \in (0, R_1) \) and \(\theta \in (-\pi, +\pi] \), we have \(\chi(r, \theta) = 1 \), so

\[
|u_n \cdot e_r(r, \theta)| = \frac{r \cdot i n}{r} \int_{\mathbb{R}} f(\xi) g \left(\eta + \frac{\xi}{n}, \theta \right) r^{i \xi/n} d\xi \quad \text{where} \quad g(\eta, \theta) := \frac{i \Lambda_m \eta \cdot m_\lambda(\eta) (\theta)}{\lambda(\eta) - \Lambda_m}.
\]

By the Lebesgue dominated convergence theorem, we see that the above integral tends to \(g(\eta, \theta) \) as \(n \to \infty \) (recall that we have chosen \(f \) such that \(\int_{\mathbb{R}} f(\xi) d\xi = 1 \)). In order to estimate the rate of convergence, define

\[
D_n(r, \theta) := \int_{\mathbb{R}} f(\xi) \left(g \left(\eta + \frac{\xi}{n}, \theta \right) - g(\eta, \theta) \right) r^{i \xi/n} d\xi - g(\eta, \theta),
\]

which can be rewritten as the sum

\[
\int_{\mathbb{R}} f(\xi) \left(g \left(\eta + \frac{\xi}{n}, \theta \right) - g(\eta, \theta) \right) r^{i \xi/n} d\xi + g(\eta, \theta) \int_{\mathbb{R}} f(\xi) \left(r^{i \xi/n - 1} \right) d\xi.
\]

On the one hand, we deduce from the differentiability of \(\lambda(\eta) \) and \(m_\lambda(\eta) \) with respect to \(\eta \) that \(|g(\eta, + \xi/n, \theta) - g(\eta, \theta)| \lesssim 1/n \) (uniformly with respect to \(\xi \) in the support of \(f \) and \(\theta \in (-\pi, +\pi] \)). On the other hand, we have \(|r^{i \xi/n - 1}| \lesssim |\log r|/n \) (since \(|e^{ix} - 1| \leq |x| \) for all \(x \in \mathbb{R} \)). As a consequence, \(|D_n(r, \theta)| \lesssim (1 + |\log r|)/n \). Assuming for simplicity that \(R_1 < 1 \) (so that \(|\log r| > |\log R_1| > 0 \) for all \(r \in (0, R_1) \)), this shows that there exists a constant \(C > 0 \) such that

\[
|u_n \cdot e_r(r, \theta) - \frac{r \cdot i n}{r} g(\eta, \theta)| \leq C \frac{|\log r|}{rn}, \quad \forall r \in (0, R_1), \quad \forall \theta \in (-\pi, +\pi].
\]

Therefore, by the triangle inequality (squared), we infer that

\[
|u_n \cdot e_r(r, \theta)|^2 \geq \frac{|g(\eta, \theta)|^2}{2r^2} - C^2 \frac{|\log r|^2}{n^2 r^2}, \quad \forall r \in (0, R_1), \quad \forall \theta \in (-\pi, +\pi].
\]

As \(g(\theta, \eta^*) \) is not zero everywhere in \((-\pi, \pi) \), one can find an interval \((\theta_1, \theta_2) \subset (-\pi, \pi) \) and a constant \(\eta_{\min} > 0 \) such that \(|g(\theta, \eta^*)| \geq \eta_{\min} \) for all \(\theta \in (\theta_1, \theta_2) \). Hence, for any \(s > 0 \) and \(n \geq n_s := \max \{ 1, s^{-1} |\log R_1| \} \), we have

\[
\| u_n \cdot e_r \|_{L^2(\mathbb{R})}^2 \geq (\theta_2 - \theta_1) \int_{e^{-sn}}^{R_1} \left(\frac{\eta_{\min}^2}{2} - C^2 \frac{|\log r|^2}{n^2 r^2} \right) \frac{dr}{r}
\]

Notice that \(|\log r|/n < s \) in the interval of integration. So, choosing \(s = \eta_{\min}/(2C) \), we infer that for all \(n > n_s \),

\[
\| u_n \cdot e_r \|_{L^2(\mathbb{R})}^2 \geq (\theta_2 - \theta_1) \int_{e^{-sn}}^{R_1} \frac{\eta_{\min}^2}{4} \frac{dr}{r} \gtrsim \log R_1 + sn.
\]

To sum up, we have proved that \(\| \Phi_n \|_{H} \gtrsim \sqrt{n} \) for large enough \(n \). Together with (iii), this shows that \(\| (A \Phi_n - \lambda \Phi_n) \|_{H} / \| \Phi_n \|_{H} \) tends to 0, which means that \(\lambda_s \) belongs to the spectrum of \(A \).

To conclude, we do not need to check the weak convergence to 0 of \(\Phi_n \|_{H} \). Indeed we know now that any point of \(\mathcal{F}_p \) belongs to \(\sigma(A) \). Hence it is an accumulation point of \(\sigma(\mathcal{A}) \), so it belongs to \(\sigma_{\text{ess}}(\mathcal{A}) \).

\[
\square
\]

A natural but bad idea

At first glance, the above construction of a Weyl sequence for a given \(\lambda \in \mathcal{F}_p \) may seem complicated and one can legitimately wonder if there is no simpler way to deduce a Weyl sequence from the black hole waves. In particular, a natural idea is to truncate \(\psi_\lambda \) closer and closer to \(C_p \), by setting for instance \(\Phi_n := (\varphi_n, u_n) \) with

\[
\varphi_n(x) := \chi_n(|x|) \psi_\lambda(x) \quad \text{and} \quad u_n(x) := \chi_n(|x|) \frac{\Lambda_m}{\lambda - \Lambda_m} \mathcal{R} \text{grad} \psi_\lambda(x).
\]
where \((\chi_n)_{n \in \mathbb{N}} \subset \mathcal{D}(\mathbb{R}^+)\) is a sequence of radial real-valued functions such that \(\chi_n(r) = 0\) if \(r < 1/n\) or \(r > R\), whereas \(\chi_n(r) = 1\) if \(2/n < r < R/2\) (where \(R\) is chosen as in (26)). It is easy to see that \(\Phi_n \in \mathcal{D}(\mathbb{R})\) for all \(n \in \mathbb{N}\). But \(\Phi_n/\|\Phi_n\|\mathcal{H}\) is not a Weyl sequence for \(\lambda\). Indeed the ratio \(\|\mathcal{A}\Phi_n - \lambda \Phi_n\|\mathcal{H}/\|\Phi_n\|\mathcal{H}\) does not tend to 0 as \(n \to \infty\). To see this, notice that \(|\psi_\lambda(r, \theta)| \lesssim 1\) and \(|\text{grad } \psi_\lambda(r, \theta)| \lesssim r^{-1}\) in \(B_R\), which shows on the one hand that

\[
\|\Phi_n\|^2_{\mathcal{H}} \lesssim \int_0^R |\chi_n(r)|^2 r \, dr + \int_0^R \frac{|\chi_n(r)|^2}{r} \, dr \lesssim \int_0^R \frac{|\chi_n(r)|^2}{r} \, dr.
\]

On the other hand, using the fact that \(\partial \psi_\lambda/\partial r = i\eta_\lambda \psi_\lambda/r\), we obtain

\[
\mathcal{A}\Phi_n - \lambda \Phi_n = \left(\left\{ -\Delta \chi_n + (1_N \Lambda_\epsilon - \lambda) \chi_n \right\} - i \left\{ \frac{\eta_\lambda}{\varepsilon \mu_0} \left(1 + \frac{\mu_0}{\mu_\lambda} \right) \frac{\chi_n}{r} \right\} \right) \psi_\lambda.
\]

Noticing that both terms in braces in the first component are real and \(|\psi_\lambda(r, \theta)| = |m_\lambda(\theta)|\), we deduce that

\[
\|\mathcal{A}\Phi_n - \lambda \Phi_n\|^2_{\mathcal{H}} \gtrsim \int_0^R \frac{|\chi_n(r)|^2}{r} \, dr
\]

As a consequence

\[
\frac{\|\mathcal{A}\Phi_n - \lambda \Phi_n\|^2_{\mathcal{H}}}{\|\Phi_n\|^2_{\mathcal{H}}} \gtrsim \frac{\int_0^R \frac{|\chi_n(r)|^2}{r} \, dr}{\int_0^R \frac{|\chi_n(r)|^2}{r} \, dr}. \quad \text{The right-hand side cannot tend to 0. Otherwise it would contradict the inequality}
\]

\[
\int_0^R \frac{|\chi_n(r)|^2}{r} \, dr \leq \frac{R^2}{4} \int_0^R \frac{|\chi_n(r)|^2}{r} \, dr,
\]

which follows from the expression \(\chi_n(r) = \int_0^r \sqrt{s} (\chi_n'(s)/\sqrt{s}) \, ds\) and Cauchy–Schwarz inequality.

3.5 Corner resonance at a boundary vertex

The construction of Weyl sequences associated to a boundary vertex \(B_q\) is exactly the same as for inner vertices. The only difference lies in the expression of the black hole wave \(\psi_\lambda\). As in section 3.4, this function is still solution to (20), but instead of the whole plane \(\mathbb{R}^2\), we consider now an infinite sector of angle \(\gamma_q\) divided in two sub-sectors of angles \(\beta_q\) and \(\gamma_q - \beta_q\) filled respectively by our NIM and vacuum (see fig. 6, right). Moreover \(\psi_\lambda\) must vanish on the boundary of the sector of angle \(\gamma_q\). Using polar coordinates as shown in fig. 6, separation of variables yields again \(\psi_\lambda(r, \theta) = r^{|n_0|} \, m_\lambda(\theta)\), where \(\eta_\lambda \in \mathbb{C}\) and \(m_\lambda\) is a solution to (22) in \((0, \gamma_q)\) which satisfies the boundary conditions \(m_\lambda(0) = m_\lambda(\gamma_q) = 0\). One can readily check that this equation admits a non-trivial solution if and only if \(\eta_\lambda\) satisfies the dispersion equation

\[
\mu_\lambda^N \tanh(\eta_\lambda \beta_q) + \mu_0 \tan(\eta_\lambda(\gamma_q - \beta_q)) = 0. \quad (30)
\]

Again we are only interested in positive real solutions \(\eta_\lambda\) to this equation. By a simple monotonicity argument, we see that it admits a unique solution if and only if \(\lambda\) belongs to the interval \(I_q\) defined in (15). In this case, we conclude that the angular modulation of the black hole wave is given (up to a complex factor) by

\[
m_\lambda(\theta) := \begin{cases} \frac{\sinh(\eta_\lambda \theta)}{\sinh(\eta_\lambda \beta_q)} & \text{if } 0 < \theta < \beta_q, \\ \frac{\sinh(\eta_\lambda(\gamma_q - \theta))}{\sinh(\eta_\lambda(\gamma_q - \beta_q))} & \text{if } \beta_q < \theta < \gamma_q. \end{cases}
\]

We can remark that this expression can be deduced from (24) by a simple angular dilation which consists in replacing simultaneously in (22) \(\theta\) by \(\pi/\gamma_q\) and \(\eta_\lambda\) by \(\eta_\lambda \gamma_q / \pi\) and choosing \(\alpha_q = 2 \beta_q \pi / \gamma_q\). Actually, the same angular dilation also connects the dispersion equation (23) with (30), since the latter can be written equivalently

\[
\frac{\sinh(\eta_\lambda(\gamma_q - 2 \beta_q))}{\sinh(\eta_\lambda \gamma_q)} = -\frac{\mu_0 + \mu_\lambda^N}{\mu_0 - \mu_\lambda^N}.
\]
This remark is related to the comment made about the examples of cavities shown in the right column of fig. 3.

Thanks to this new black hole wave adapted to a boundary vertex \(B_q \), we can reuse the definition (26) of \((\varphi_n, u_n) \) and follow exactly the same lines as in the proof of proposition 8, which yields:

Proposition 9. Let \(\Phi_n := (\varphi_n, u_n) \) defined by (26) with the above definition of \(\psi_\lambda(r, \theta) = r^{ln\lambda} m_\lambda(\theta) \). Then \(\Phi_n/\|\Phi_n\|_H \) is a Weyl sequence for \(\lambda_s \in I_q \).

3.6 Proof of theorem 2

We can now collect the results of the preceding subsections. We have constructed Weyl sequences for \(\lambda = 0 \) (proposition 5), \(\lambda = \Lambda_m/2 \) (proposition 7), \(\lambda \in J_p \) for \(p = 1, \ldots, P \) (proposition 8) and \(\lambda \in I_q \) for \(q = 1, \ldots, Q \) (proposition 9). Moreover, proposition 3 tells us that \(\lambda = \Lambda_m \) is an eigenvalue of infinite multiplicity. Hence all these points belong to \(\sigma_{\text{ess}}(A) \). As the essential spectrum is closed, we have proved that

\[
\sigma_{\text{all}} := \{0, \Lambda_m/2, \Lambda_m\} \cup \bigcup_{p=1}^{P} J_p \cup \bigcup_{q=1}^{Q} I_q \subseteq \sigma_{\text{ess}}(A).
\]

It remains to check that there is no other point in \(\sigma_{\text{ess}}(A) \), that is, \(\sigma_{\text{all}} \supset \sigma_{\text{ess}}(A) \). To do this, we use the following characterization of the complement of the essential spectrum [15]: a point \(\lambda \in \mathbb{R} \) does not belong to \(\sigma_{\text{ess}}(A) \) if and only if \(A - \lambda I \) is a semi-Fredholm operator \((i.e., \) its range is closed and its kernel is finite dimensional). We thus have to check this property for all \(\lambda \in \mathbb{R}^+ \setminus \sigma_{\text{all}} \). This result is far to be obvious. Fortunately, it can be easily deduced from an existing nearby result which involves a functional framework that is slightly different from ours. Indeed it is proved in [5] by means of the so-called T-coercivity technique that the operator \(B_\lambda : H^1_0(C) \rightarrow H^{-1}(C) \) defined by

\[
B_\lambda \varphi := \text{div} \left(\frac{1}{\mu_\lambda} \text{grad} \varphi \right) + \lambda \varepsilon_\lambda \varphi
\]

is a semi-Fredholm operator for all \(\lambda \in \mathbb{R}^+ \setminus \sigma_{\text{all}} \). This operator is nothing but the operator involved in our initial non-linear eigenvalue problem (3). Its link with \(A - \lambda I \) is given by the following relation: for all \((\varphi, u) \in H^1_0(C) \times L^2(N)^2 \) and \((\psi, v) \in H \), we have

\[
((\varphi, u), (A - \lambda I)(\psi, v)) \iff \begin{cases} B_\lambda \varphi = S_\lambda(\psi, v), \\ u = V_\lambda(\varphi, v), \end{cases}
\]

(31)

where we have denoted

\[
S_\lambda(\psi, v) := \frac{\text{div}(\mathcal{R}^* v)}{\mu_0(\lambda - \Lambda_m)} - \varepsilon_0 \psi \quad \text{and} \quad V_\lambda(\varphi, v) := \frac{\Lambda_m \mathcal{R} \text{grad} \varphi - v}{\lambda - \Lambda_m}.
\]

On the other hand, choosing \((\psi, v) = 0 \) in this formula shows that \((\varphi, u) \) belongs to \(\text{Ker}(A - \lambda I) \) if and only if \(\varphi \in \text{Ker} B_\lambda \) and \(u = \Lambda_m \mathcal{R} \text{grad} \varphi/(\lambda - \Lambda_m) \). Hence \(\text{Ker}(A - \lambda I) \) is finite dimensional if \(\text{Ker} B_\lambda \) is so.

On the other hand, let us check that the range \(\text{Ran}(A - \lambda I) \) is closed in \(H \) if \(\text{Ran} B_\lambda \) is closed in \(H^{-1}(C) \). Consider a sequence \((\varphi_n, u_n) \) of \(\text{D}(A) \) such that \((\psi_n, v_n) := (A - \lambda I)(\varphi_n, u_n) \) converges in \(\mathcal{H} \). Let \((\psi, v) \) denote its limit. Relation (31) shows that \(B_\lambda \varphi_n = S_\lambda(\psi_n, v_n) \in \text{Ran} B_\lambda \). Noticing that \(S_\lambda \) is continuous from \(\mathcal{H} \) to \(H^{-1}(C) \), we infer that \(S_\lambda(\psi_n, v_n) \) tends to \(S_\lambda(\psi, v) \) in \(H^{-1}(C) \). As \(\text{Ran} B_\lambda \) is closed, we deduce that \(S_\lambda(\psi, v) \in \text{Ran} B_\lambda \), so there exists \(\varphi \in H^1_0(C) \) such that \(B_\lambda \varphi = S_\lambda(\psi, v) \). Setting \(u = V_\lambda(\varphi, v) \), we see from (31) that \((\varphi, u) \in \text{D}(A) \) and \((A - \lambda I)(\varphi, u) = (\psi, v) \in \text{Ran}(A - \lambda I) \), which yields the conclusion.

To sum up, thanks to [5], we know that \(A - \lambda I \) is a semi-Fredholm operator for all \(\lambda \in \mathbb{R}^+ \setminus \sigma_{\text{all}} \), thus \(\sigma_{\text{all}} = \sigma_{\text{ess}}(A) \).

The only statement of theorem 2 which has not been justified concerns the two accumulation points of the discrete spectrum \(\sigma_{\text{disc}}(A) \). First, as \(A \) is an unbounded operator, its spectrum is necessarily unbounded. We have proved that its essential spectrum is contained in \([0, \Lambda_m] \), so there is a sequence of eigenvalues of \(\sigma_{\text{disc}}(A) \) which tends to \(+\infty \). Besides we know that 0 is not an eigenvalue of \(A \) (see proposition 3) and is an isolated point of \(\sigma_{\text{ess}}(A) \). Therefore it is an accumulation point of \(\sigma_{\text{disc}}(A) \). This completes the proof of theorem 2.
4 Conclusion

In this paper, we have explored in a simple academic situation the spectral effects of an interface between vacuum and a negative-index material. Much more needs to be done to deal with more involved situations. In particular, it should interesting to understand whether the results obtained here extend to cavities with piecewise smooth (curved) boundaries. Besides, instead of the Drude model studied here, one could consider a Lorentz model [17, 18], for which negativity arises near a non-zero frequency: the Drude’s laws (1) are replaced by

\[\varepsilon^N_\lambda := \varepsilon_0 \left(1 - \frac{\Lambda_e}{\lambda - \lambda_e} \right) \quad \text{and} \quad \mu^N_\lambda := \mu_0 \left(1 - \frac{\Lambda_m}{\lambda - \lambda_m} \right), \]

where \(\Lambda_e, \lambda_e, \Lambda_m \) and \(\lambda_m \) are non-negative coefficients which characterize the medium. For generalized Lorentz material [26], \(\varepsilon^N_\lambda \) and \(\mu^N_\lambda \) express as finite sums of similar terms. Other models, including dissipative media, should be studied (see [13] for an overview). Finally, it seems necessary to tackle three-dimensional problems, for scalar and vector propagation equations, in particular Maxwell’s equations. Works in these directions are in progress.

References

