Non-linear behaviour of free-edge shallow spherical shells: Effect of the geometry

Abstract : Non-linear vibrations of free-edge shallow spherical shells are investigated, in order to predict the trend of non-linearity (hardening/softening behaviour) for each mode of the shell, as a function of its geometry. The analog for thin shallow shells of von Kármán's theory for large deflection of plates is used. The main difficulty in predicting the trend of non-linearity relies in the truncation used for the analysis of the partial differential equations (PDEs) of motion. Here, non-linear normal modes through real normal form theory are used. This formalism allows deriving the analytical expression of the coefficient governing the trend of non-linearity. The variation of this coefficient with respect to the geometry of the shell (radius of curvature R, thickness h and outer diameter 2 a) is then numerically computed, for axisymmetric as well as asymmetric modes. Plates (obtained as R → ∞) are known to display a hardening behaviour, whereas shells generally behave in a softening way. The transition between these two types of non-linearity is clearly studied, and the specific role of 2:1 internal resonances in this process is clarified. © 2006 Elsevier Ltd. All rights reserved.
Type de document :
Article dans une revue
International Journal of Non-Linear Mechanics, Elsevier, 2006, 41 (5), pp.678-692. 〈10.1016/j.ijnonlinmec.2005.12.004〉
Liste complète des métadonnées

Littérature citée [48 références]  Voir  Masquer  Télécharger

https://hal-ensta.archives-ouvertes.fr/hal-00838885
Contributeur : Aurélien Arnoux <>
Soumis le : vendredi 18 mars 2016 - 17:32:10
Dernière modification le : mercredi 20 décembre 2017 - 11:36:01
Document(s) archivé(s) le : dimanche 19 juin 2016 - 23:28:34

Fichier

2006-IJNLM_shellGeometryHardSo...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Cyril Touzé, Olivier Thomas. Non-linear behaviour of free-edge shallow spherical shells: Effect of the geometry. International Journal of Non-Linear Mechanics, Elsevier, 2006, 41 (5), pp.678-692. 〈10.1016/j.ijnonlinmec.2005.12.004〉. 〈hal-00838885〉

Partager

Métriques

Consultations de la notice

98

Téléchargements de fichiers

95