Solving electromagnetic eigenvalue problems in polyhedral domains with nodal finite elements

Annalisa Buffa 1 Patrick Ciarlet 2 Erell Jamelot 2
2 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : A few years ago, Costabel and Dauge proposed a variational setting, which allows one to solve numerically the time-harmonic Maxwell equations in 3D polyhedral geometries, with the help of a continuous approximation of the electromagnetic field. In order to remove spurious eigenmodes, their method required a parameterization of the variational formulation. In order to avoid this difficulty, we use a mixed variational setting instead of the parameterization, which allows us to handle the divergence-free constraint on the field in a straightforward manner. The numerical analysis of the method is carried out, and numerical examples are provided to show the efficiency of our approach. © Springer-Verlag 2009.
Type de document :
Article dans une revue
Numerische Mathematik, Springer Verlag, 2009, 113 (4), pp.497-518. 〈10.1007/s00211-009-0246-2〉
Liste complète des métadonnées

https://hal-ensta.archives-ouvertes.fr/hal-00873069
Contributeur : Aurélien Arnoux <>
Soumis le : mercredi 16 octobre 2013 - 15:07:51
Dernière modification le : jeudi 11 janvier 2018 - 06:20:23

Lien texte intégral

Identifiants

Collections

Citation

Annalisa Buffa, Patrick Ciarlet, Erell Jamelot. Solving electromagnetic eigenvalue problems in polyhedral domains with nodal finite elements. Numerische Mathematik, Springer Verlag, 2009, 113 (4), pp.497-518. 〈10.1007/s00211-009-0246-2〉. 〈hal-00873069〉

Partager

Métriques

Consultations de la notice

205