Existence and Asymptotic Behavior of the Wave Equation with Dynamic Boundary Conditions

Abstract : The goal of this work is to study a model of the strongly damped wave equation with dynamic boundary conditions and nonlinear boundary/interior sources and nonlinear boundary/interior damping. First, applying the nonlinear semigroup theory, we show the existence and uniqueness of local in time solutions. In addition, we show that in the strongly damped case solutions gain additional regularity for positive times t>0. Second, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term and if the boundary source dominates the boundary damping, then the solution grows as an exponential function. Moreover, in the absence of the strong damping term, we prove that the solution ceases to exists and blows up in finite time.
Type de document :
Article dans une revue
Applied Mathematics and Optimization, Springer Verlag (Germany), 2012, 66, pp.81-122. 〈10.1007/s00245-012-9165-1〉
Liste complète des métadonnées

https://hal-ensta.archives-ouvertes.fr/hal-00969123
Contributeur : Aurélien Arnoux <>
Soumis le : mercredi 2 avril 2014 - 10:16:29
Dernière modification le : mercredi 6 décembre 2017 - 16:46:01

Lien texte intégral

Identifiants

Collections

Citation

Philip Jameson Graber, Belkacem Said-Houari. Existence and Asymptotic Behavior of the Wave Equation with Dynamic Boundary Conditions. Applied Mathematics and Optimization, Springer Verlag (Germany), 2012, 66, pp.81-122. 〈10.1007/s00245-012-9165-1〉. 〈hal-00969123〉

Partager

Métriques

Consultations de la notice

101