Solution of axisymmetric Maxwell equations

Franck Assous Patrick Ciarlet 1 Simon Labrunie
1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : In this article, we study the static and time-dependent Maxwell equations in axisymmetric geometry. Using the mathematical tools introduced in (Math. Meth. Appl. Sci. 2002; 25: 49), we investigate the decoupled problems induced in a meridian half-plane, and the splitting of the solution in a regular part and a singular part, the former being in the Sobolev space H1 component-wise. It is proven that the singular parts are related to singularities of Laplace-like or wave-like operators. We infer from these characterizations: (i) the finite dimension of the space of singular fields; (ii) global space and space-time regularity results for the electromagnetic field. This paper is the continuation of (Modél. Math. Anal. Numér. 1998; 32: 359, Math. Meth. Appl. Sci. 2002; 25: 49). Copyright © 2003 John Wiley & Sons, Ltd.
Type de document :
Article dans une revue
Mathematical Methods in the Applied Sciences, Wiley, 2003, 26 (10), pp.861-896. 〈10.1002/mma.400〉
Liste complète des métadonnées
Contributeur : Aurélien Arnoux <>
Soumis le : lundi 12 mai 2014 - 09:46:58
Dernière modification le : mardi 3 juillet 2018 - 13:00:03

Lien texte intégral




Franck Assous, Patrick Ciarlet, Simon Labrunie. Solution of axisymmetric Maxwell equations. Mathematical Methods in the Applied Sciences, Wiley, 2003, 26 (10), pp.861-896. 〈10.1002/mma.400〉. 〈hal-00989564〉



Consultations de la notice