REDUCTION OF GEOMETRICALLY NON-LINEAR MODELS OF SHELL VIBRATIONS INCLUDING IN-PLANE INERTIA

Abstract : This article deals with the application of reduced-order models (ROMs), via the asymptotic NNM method, to thin shells large-amplitude vibrations. Two particular geometries are addressed: a doubly-curved shallow shell, simply supported on a rectangular base, and a circular cylindrical panel with simply supported, in-plane free edges. In both cases, the shell is subjected to a harmonic excitation, normal to its surface, and in the spectral neighbourhood of its fundamental frequency. For both shells, the models use Donnell's non-linear strain-displacement relationships, with in-plane inertia retained. The discretized equations of motion are obtained by the Lagrangian approach, where the unknown displacements are expanded on an ad-hoc basis of approximation functions that are not the eigenmodes. As a consequence, a large number of degrees-of-freedom (dofs) is necessary in order to obtain convergence. The reduction to a single NNM is shown for various excitation amplitude, and compared to a reference solution. Perfect results are obtained for vibration amplitude lower or equal to 1.5 times the thickness of the shell.
Type de document :
Communication dans un congrès
EUROMECH Colloquium No. 483, 2007, Porto, Portugal
Liste complète des métadonnées

Littérature citée [4 références]  Voir  Masquer  Télécharger

https://hal-ensta.archives-ouvertes.fr/hal-01154713
Contributeur : Cyril Touzé <>
Soumis le : vendredi 22 mai 2015 - 19:00:19
Dernière modification le : mercredi 20 décembre 2017 - 11:34:06
Document(s) archivé(s) le : jeudi 20 avril 2017 - 07:50:41

Fichier

euromech483.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01154713, version 1

Collections

Citation

Cyril Touzé, Marco Amabili, Olivier Thomas, Cédric Camier. REDUCTION OF GEOMETRICALLY NON-LINEAR MODELS OF SHELL VIBRATIONS INCLUDING IN-PLANE INERTIA. EUROMECH Colloquium No. 483, 2007, Porto, Portugal. 〈hal-01154713〉

Partager

Métriques

Consultations de la notice

65

Téléchargements de fichiers

38